Learning to Rank from Noisy Data

作者: Wenkui Ding , Xiubo Geng , Xu-Dong Zhang

DOI: 10.1145/2576230

关键词:

摘要: Learning to rank, which learns the ranking function from training data, has become an emerging research area in information retrieval and machine learning. Most existing work on …

参考文章(37)
Vitor R. Carvalho, Jaime G. Carbonell, William W. Cohen, Jonathan L. Elsas, A Meta-Learning Approach for Robust Rank Learning ,(2008)
Nick Craswell, Ian Soboroff, Charles L. A. Clarke, Overview of the TREC 2009 Web Track text retrieval conference. ,(2009)
Harry Zhang, The Optimality of Naive Bayes. the florida ai research society. pp. 562- 567 ,(2004)
Bernhard Schölkopf, Neil D. Lawrence, Estimating a Kernel Fisher Discriminant in the Presence of Label Noise international conference on machine learning. pp. 306- 313 ,(2001)
F. Jelinek, Interpolated estimation of Markov source parameters from sparse data Proc. Workshop on Pattern Recognition in Practice, 1980. pp. 381- 397 ,(1980)
r;ribeiro-neto bueza-yates (b), Modern Information Retrieval ,(1999)
Carla E. Brodley, Mark A. Friedl, Identifying mislabeled training data Journal of Artificial Intelligence Research. ,vol. 11, pp. 131- 167 ,(1999) , 10.1613/JAIR.606
Chengxiang Zhai, John Lafferty, A study of smoothing methods for language models applied to information retrieval ACM Transactions on Information Systems. ,vol. 22, pp. 179- 214 ,(2004) , 10.1145/984321.984322
Kalervo Järvelin, Jaana Kekäläinen, IR evaluation methods for retrieving highly relevant documents international acm sigir conference on research and development in information retrieval. ,vol. 51, pp. 41- 48 ,(2000) , 10.1145/3130348.3130374