A general classification of three-dimensional flow fields

作者: M. S. Chong , A. E. Perry , B. J. Cantwell

DOI: 10.1063/1.857730

关键词:

摘要: … use in the interpretation of complex flow field data. Historically, critical … flow patterns and is based on the idea mentioned earlier offorming a local Taylor series expansion of the flow field (…

参考文章(15)
Stephen Wiggins, Global Bifurcations and Chaos Applied Mathematical Sciences. ,(1988) , 10.1007/978-1-4612-1042-9
Austin Blaquière, Nonlinear system analysis ,(1966)
S. Ė. Khaĭkin, Vitt, A. A. , d., Wilfred Fishwick, F. Immirzi, A. A. (Aleksandr Aleksandrovich) Andronov, Theory of Oscillators ,(1966)
A.E. Perry, B.D. Fairlie, Critical Points in Flow Patterns International Union of Theoretical and Applied Mechanics and International Union of Geodesy and Geophysics - Turbulent Diffusion in Environmental Pollution, Proceedings of a Symposium held at Charlottesville. ,vol. 18, pp. 299- 315 ,(1975) , 10.1016/S0065-2687(08)60588-9
Unver Kaynak, Terry L. Holst, Brian J. Cantwell, Reese L. Sorenson, Numerical simulation of transonic separated flows over low-aspect-ratio wings Journal of Aircraft. ,vol. 24, pp. 531- 539 ,(1987) , 10.2514/3.45472
Wilfred Kaplan, Peter L. Balise, Ordinary differential equations ,(1958)
Brian J. Cantwell, Transition in the axisymmetric jet Journal of Fluid Mechanics. ,vol. 104, pp. 369- 386 ,(1981) , 10.1017/S0022112081002954
John W. Reyn, Classification and description of the singular points of a system of three linear differential equations Zeitschrift für Angewandte Mathematik und Physik. ,vol. 15, pp. 540- 557 ,(1964) , 10.1007/BF01601310
L. Rosenhead, Lawrence Talbot, Laminar boundary layers ,(1963)