A computational study of the relationships linking lightning frequency and other thundercloud parameters

作者: Marcia B. Baker , Hugh J. Christian , John Latham

DOI: 10.1002/QJ.49712152703

关键词:

摘要: In an effort to optimize the value of global-scale measurements obtained with NASA/MSFC satelliteborne Lightning Imaging System (LIS), a simple computational model thundercloud electrification has been developed, from which it is possible derive crude relationships between lightning frequency f (which LIS will measure) and cloud parameters such as radar reflectivity Z, precipitation rate P, updraught speed w, radius R, ice-crystal concentration i graupel-pellet Ng. Electric field-growth assumed occur via non-inductive charging mechanism, for both Fletcher Hallett-Mossop types glaciation mechanisms. A criterion used distinguish cloud-to-ground intracloud discharges. found be especially sensitive w in situations where, increases, temperature at balance level, Tbal, upper boundary zone falls. these circumstances N1 sizes ice hydrometeors are significantly increased, corresponding enhancement effectiveness charge transfer. Over wide range conditions, roughly proportional first power R1NiNg Z (in some circumstances) least sixth w. relationship P depends critically on whether or not Tbal strongly linked. capable producing inverted-polarity thunderclouds; not.

参考文章(21)
Terry J. Schuur, W. David Rust, Bradley F. Smull, Thomas C. Marshall, Electrical and Kinematic Structure of the Stratiform Precipitation Region Trailing an Oklahoma Squall Line Journal of the Atmospheric Sciences. ,vol. 48, pp. 825- 842 ,(1991) , 10.1175/1520-0469(1991)048<0825:EAKSOT>2.0.CO;2
Steven A. Rutledge, Chungu Lu, Donald R. MacGorman, Positive Cloud-to-Ground Lightning in Mesoscale Convective Systems Journal of the Atmospheric Sciences. ,vol. 47, pp. 2085- 2100 ,(1990) , 10.1175/1520-0469(1990)047<2085:PCTGLI>2.0.CO;2
S. E. Reynolds, M. Brook, Mary Foulks Gourley, THUNDERSTORM CHARGE SEPARATION Journal of Meteorology. ,vol. 14, pp. 426- 436 ,(1957) , 10.1175/1520-0469(1957)014<0426:TCS>2.0.CO;2
Richard E. Orville, Winter lightning along the East Coast Geophysical Research Letters. ,vol. 17, pp. 713- 715 ,(1990) , 10.1029/GL017I006P00713
Steven J. Goodman, Dennis E. Buechler, Patrick D. Wright, W. David Rust, Lightning and precipitation history of a microburst‐producing storm Geophysical Research Letters. ,vol. 15, pp. 1185- 1188 ,(1988) , 10.1029/GL015I011P01185
J. HALLETT, S. C. MOSSOP, Production of secondary ice particles during the riming process Nature. ,vol. 249, pp. 26- 28 ,(1974) , 10.1038/249026A0
S. Chauzy, M. Chong, A. Delannoy, S. Despiau, The June 22 tropical squall line observed during COPT 81 experiment: Electrical signature associated with dynamical structure and precipitation Journal of Geophysical Research. ,vol. 90, pp. 6091- 6098 ,(1985) , 10.1029/JD090ID04P06091
R. F. Griffiths, J. Latham, Electrical corona from ice hydrometeors Quarterly Journal of the Royal Meteorological Society. ,vol. 100, pp. 163- 180 ,(1974) , 10.1002/QJ.49710042404
John H. Helsdon, Gang Wu, Richard D. Farley, An intracloud lightning parameterization scheme for a storm electrification model Journal of Geophysical Research. ,vol. 97, pp. 5865- 5884 ,(1992) , 10.1029/92JD00077
H. C. Koons, J. L. Roeder, O. H. Bauer, G. Haerendel, R. Treumann, R. R. Anderson, D. A. Gurnett, R. H. Holzworth, Observation of nonlinear wave decay processes in the solar wind by the AMPTE IRM Plasma Wave Experiment Journal of Geophysical Research. ,vol. 92, pp. 5865- 5872 ,(1987) , 10.1029/JA092IA06P05865