A coherent wave model for pattern generation during the aggregation of slime mould amoeba

作者: R. Paul , J. F. Olson

DOI: 10.1007/BF01861086

关键词:

摘要: In this paper we examine the finite difference equation describing acrasin concentration as used by Parnas and Segel [11] in a computer simulation of aggregation slime mould amoeba. We consider corresponding differential two spatial dimensions rather than single dimension [11]. solve along spiral curve to within quadrature for low concentrations (in keeping with conditions) extract an analytical form traveling wave. For “quantized” relationship between period wave refractory amoeba show creation process curve.

参考文章(25)
H. Fröhlich, Coherence in Biology Proceedings in Life Sciences. pp. 1- 5 ,(1983) , 10.1007/978-3-642-69186-7_1
L. N. Howard, N. Kopell, Slowly varying waves and shock structures in reaction-diffusion equations Studies in Applied Mathematics. ,vol. 56, pp. 95- 145 ,(1977) , 10.1002/SAPM197756295
J. A. Tuszyński, R. Paul, R. Chatterjee, Exact solutions to the time-dependent Landau-Ginzburg model of phase transitions Physical Review B. ,vol. 29, pp. 380- 386 ,(1984) , 10.1103/PHYSREVB.29.380
G. Gerisch, B. Hess, Cyclic-AMP-controlled oscillations in suspended Dictyostelium cells: their relation to morphogenetic cell interactions. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 71, pp. 2118- 2122 ,(1974) , 10.1073/PNAS.71.5.2118
J. M. Greenberg, Periodic Solutions to Reaction-Diffusion Equations Siam Journal on Applied Mathematics. ,vol. 30, pp. 199- 205 ,(1976) , 10.1137/0130022
Morrel H. Cohen, Anthony Robertson, Chemotaxis and the early stages of aggregation in cellular slime molds Journal of Theoretical Biology. ,vol. 31, pp. 119- 130 ,(1971) , 10.1016/0022-5193(71)90125-1
G. Dewel, P. Borckmans, D. Walgraef, Nonequilibrium phase transitions and chemical instabilities Journal of Statistical Physics. ,vol. 24, pp. 119- 137 ,(1981) , 10.1007/BF01007639