Robust classification techniques for acoustic signal analysis

作者: S. Beck , L. Deuser , J. Ghosh

DOI: 10.1109/SSAP.1992.246883

关键词:

摘要: Artificial neural networks are identified that less sensitive to noisy feature vectors, and provide a sound estimate of the posterior class probabilities. These classifiers include 'optimum brain damage' version multilayer perceptron an elliptical basis function classifier. Since different classification techniques have inductive biases, more accurate robust can be obtained by combining outputs multiple classifiers. Two approaches output combination presented yield better results for real oceanic signals, also detecting outliers 'false alarms'. >

参考文章(8)
David Lowe, David S. Broomhead, Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks Complex Systems. ,vol. 2, pp. 321- 355 ,(1988)
Michael D. Richard, Richard P. Lippmann, Neural Network Classifiers Estimate Bayesian a posteriori Probabilities. Neural Computation. ,vol. 3, pp. 461- 483 ,(1991) , 10.1162/NECO.1991.3.4.461
R.P. Lippmann, Pattern classification using neural networks IEEE Communications Magazine. ,vol. 27, pp. 47- 50 ,(1989) , 10.1109/35.41401
Joydeep Ghosh, Steven D. Beck, Chen-Chau Chu, Evidence combination techniques for robust classification of short-duration oceanic signals Proceedings of SPIE. ,vol. 1706, pp. 266- 276 ,(1992) , 10.1117/12.139951
Steven D. Beck, Joydeep Ghosh, Noise sensitivity of static neural network classifiers Proceedings of SPIE. ,vol. 1709, pp. 770- 779 ,(1992) , 10.1117/12.140061
Yann LeCun, John Denker, Sara Solla, None, Optimal Brain Damage neural information processing systems. ,vol. 2, pp. 598- 605 ,(1989)
J. Ghosh, L. Deuser, S.D. Beck, A neural network based hybrid system for detection, characterization, and classification of short-duration oceanic signals IEEE Journal of Oceanic Engineering. ,vol. 17, pp. 351- 363 ,(1992) , 10.1109/48.180304