Calibrated FFT-based density approximations for -stable distributions

作者: Christian Menn , Svetlozar T. Rachev

DOI: 10.1016/J.CSDA.2005.03.004

关键词:

摘要: An algorithm for the approximation of @a-stable densities is developed and compared with similar methodologies. The proposed approach employs an adaptive Simpson rule quadrature Fourier inversion integral asymptotic Bergstrom series expansions tails density. It guaranteed that integrates precisely to unity which helpful numerical maximum-likelihood routines. accuracy has been verified respect values obtained by Nolan's program STABLE a grid parameter values. shown significant reduction computational effort can be achieved while maintaining satisfying accuracy.

参考文章(13)
Ercan E Kuruoğlu, Christophe Molina, William J Fitzgerald, None, Approximation of α-stable probability densities using finite Gaussian mixtures european signal processing conference. pp. 1- 4 ,(1998)
V. M. Zolotarev, One-dimensional stable distributions ,(1986)
J. Huston McCulloch, Numerical approximation of the symmetric stable distribution and density A practical guide to heavy tails. pp. 489- 499 ,(1998)
John P. Nolan, Numerical calculation of stable densities and distribution functions Heavy Tails and Highly Volatile Phenomena. Satellite Meeting. ,vol. 13, pp. 759- 774 ,(1997) , 10.1080/15326349708807450
Aleksander Weron, Aleksander Janicki, Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes Research Papers in Economics. ,(1994)
S. Mittnik, T. Doganoglu, D. Chenyao, Computing the probability density function of the stable Paretian distribution Mathematical and Computer Modelling. ,vol. 29, pp. 235- 240 ,(1999) , 10.1016/S0895-7177(99)00106-5
Harald Bergström, On some expansions of stable distribution functions Arkiv för Matematik. ,vol. 2, pp. 375- 378 ,(1952) , 10.1007/BF02591503
Gennady Samorodnitsky, Murad S. Taqqu, Stable Non-Gaussian Random Processes Journal of the American Statistical Association. ,vol. 90, pp. 805- ,(1995) , 10.1201/9780203738818
John P. Nolan, Parameterizations and modes of stable distributions Statistics & Probability Letters. ,vol. 38, pp. 187- 195 ,(1998) , 10.1016/S0167-7152(98)00010-8