A hierarchical particle swarm optimizer and its adaptive variant

作者: S. Janson , M. Middendorf

DOI: 10.1109/TSMCB.2005.850530

关键词:

摘要: A hierarchical version of the particle swarm optimization (PSO) metaheuristic is introduced in this paper. In the new method called H-PSO, the particles are arranged in a dynamic hierarchy that is used to define a neighborhood structure. Depending on the quality of their so-far best-found solution, the particles move up or down the hierarchy. This gives good particles that move up in the hierarchy a larger influence on the swarm. We introduce a variant of H-PSO, in which the shape of the hierarchy is dynamically adapted during the …

参考文章(28)
T. M. Blackwell, Swarms in dynamic environments genetic and evolutionary computation conference. pp. 1- 12 ,(2003) , 10.1007/3-540-45105-6_1
Kalyan Veeramachaneni, Thanmaya Peram, Chilukuri Mohan, Lisa Ann Osadciw, Optimization using particle swarms with near neighbor interactions genetic and evolutionary computation conference. ,vol. 2723, pp. 110- 121 ,(2003) , 10.1007/3-540-45105-6_10
M. Birattari, T. Stutzle, M. Dorigo, Ant Colony Optimization ,(2004)
Yuhui Shi, Russell C. Eberhart, Parameter Selection in Particle Swarm Optimization Evolutionary Programming. pp. 591- 600 ,(1998) , 10.1007/BFB0040810
Arlindo Silva, Ana Neves, Ernesto Costa, An Empirical Comparison of Particle Swarm and Predator Prey Optimisation international conference on artificial intelligence. pp. 103- 110 ,(2002) , 10.1007/3-540-45750-X_13
J. Kennedy, Stereotyping: improving particle swarm performance with cluster analysis congress on evolutionary computation. ,vol. 2, pp. 1507- 1512 ,(2000) , 10.1109/CEC.2000.870832
Michael Guntsch, Martin Middendorf, A Population Based Approach for ACO Lecture Notes in Computer Science. pp. 72- 81 ,(2002) , 10.1007/3-540-46004-7_8
M. Lovbjerg, T. Krink, Extending particle swarm optimisers with self-organized criticality congress on evolutionary computation. ,vol. 2, pp. 1588- 1593 ,(2002) , 10.1109/CEC.2002.1004479