Some extremal results on circles containing points

作者: Ryan Hayward , David Rappaport , Rephael Wenger

DOI: 10.1007/BF02187726

关键词:

摘要: We define ?(n) to be the largest number such that for every setP ofn points in plane, there exist two pointsx, y ? P, where circle containingx andy contains ofP. establish lower and upper bounds show [n/27]+2≤?(n)≤[n/4]+1. $$\bar \Pi (n)$$ special case then are restricted vertices of a convex polygon. (n) = [n/3] + 1$$ .

参考文章(5)
John Adrian Bondy, Graph theory with applications ,(1976)
V. Neumann-Lara, J. Urrutia, A combinatorial result on points and circles on the plane Discrete Mathematics. ,vol. 69, pp. 173- 178 ,(1988) , 10.1016/0012-365X(88)90015-5
Imre Bárány, James H. Schmerl, Stuart J. Sidney, Jorge Urrutia, A combinatorial result about points and balls in euclidean space Discrete & Computational Geometry. ,vol. 4, pp. 259- 262 ,(1989) , 10.1007/BF02187727
E. Keith Lloyd, J. A. Bondy, U. S. R. Murty, Graph Theory with Applications The Mathematical Gazette. ,vol. 62, pp. 63- ,(1978) , 10.2307/3617646
J. A. Bondy, U. S. R. Murty, Graph Theory with Applications Macmillan Education UK. ,(1976) , 10.1007/978-1-349-03521-2