Stochastic diffusion equation with singular diffusivity and gradient-dependent noise in binary tomography

作者: B Sixou , L Wang , F Peyrin

DOI: 10.1088/1742-6596/542/1/012001

关键词:

摘要: In this work, we use stochastic diffusion equation with a singular diffusivity and gradient-dependent noise to improve the reconstruction of binary tomography cross-sections obtained from small number projections. A first image is Total Variation regularization method. The then refined approach. method applied noisy bone cross-section 10 projection angles.

参考文章(10)
T.D. Capricelli, P.L. Combettes, A Convex Programming Algorithm for Noisy Discrete Tomography Advances in Discrete Tomography and Its Applications. pp. 207- 226 ,(2007) , 10.1007/978-0-8176-4543-4_10
Peter E Kloeden, Eckhard Platen, Matthias Gelbrich, Werner Romisch, Numerical Solution of Stochastic Differential Equations ,(1992)
Yilun Wang, Junfeng Yang, Wotao Yin, Yin Zhang, A New Alternating Minimization Algorithm for Total Variation Image Reconstruction Siam Journal on Imaging Sciences. ,vol. 1, pp. 248- 272 ,(2008) , 10.1137/080724265
Weiwei Cai, Lin Ma, Comparison of approaches based on optimization and algebraic iteration for binary tomography Computer Physics Communications. ,vol. 181, pp. 1974- 1981 ,(2010) , 10.1016/J.CPC.2010.09.004
Lian Apostol, Vincent Boudousq, Oliver Basset, Christophe Odet, Sophie Yot, Joachim Tabary, Jean‐Marc Dinten, Elodie Boller, Pierre‐Olivier Kotzki, Françoise Peyrin, None, Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture. Medical Physics. ,vol. 33, pp. 3546- 3556 ,(2006) , 10.1118/1.2211727
Viorel Barbu, Giuseppe Da Prato, Michael Röckner, Stochastic Nonlinear Diffusion Equations with Singular Diffusivity Siam Journal on Mathematical Analysis. ,vol. 41, pp. 1106- 1120 ,(2009) , 10.1137/080718966
Mário A T Figueiredo, M V Afonso, José M Bioucas-Dias, An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems IEEE Transactions on Image Processing. ,vol. 20, pp. 681- 695 ,(2011) , 10.1109/TIP.2010.2076294
K.J. Batenburg, J. Sijbers, Generic iterative subset algorithms for discrete tomography Discrete Applied Mathematics. ,vol. 157, pp. 438- 451 ,(2009) , 10.1016/J.DAM.2008.05.033
E Gouillart, F Krzakala, M Mézard, L Zdeborová, Belief-propagation reconstruction for discrete tomography Inverse Problems. ,vol. 29, pp. 035003- ,(2013) , 10.1088/0266-5611/29/3/035003