Study of Nano Hydroxyapatite/ Poly(Lactic Acid)-Polycaprolactone Nanofiber Composite Scaffolds

作者: Guojie Xu , Fei Luo , Yan Liu , Shunyu Chen , Xiufeng Xiao

DOI: 10.2991/CMFE-15.2015.67

关键词:

摘要: At present, tissue engineering scaffolds in the process of clinical medicine plays an irreplaceable important role. Based on in-situ precipitation combined with frozen extraction, good n-HA dispersion and three-dimensional (3D) structure n-HA/PLLA-PCL composite nanofibrous were prepared. The effects proportion polymer, gel temperature amount calcium phosphate solution morphology investigated. From experimental results,it can be concluded that scaffolds’ have changed while proportions polymer are different, more PCL, fiber diameter increases. low (-10°C or lower), could able to get relatively uniform nano network structure, at high (0°C higher), nanofibers tend flake growth, support is compact. Also, adding (NH4)2HPO4 solution, nanometer increases, however, degree uniformity decreases. Keywordshydroxyapatite scaffold; nanofibers; thermal induced phase separation technique; precipitation; extraction

参考文章(10)
Y. Fang, D.K. Agrawal, D.M. Roy, R. Roy, P.W. Brown, Ultrasonically accelerated synthesis of hydroxyapatite Journal of Materials Research. ,vol. 7, pp. 2294- 2298 ,(1992) , 10.1557/JMR.1992.2294
Su A. Park, Jung Bok Lee, Yang Eun Kim, Ji Eun Kim, Jun Hee Lee, Jung-Woog Shin, Il Keun Kwon, WanDoo Kim, Fabrication of biomimetic PCL scaffold using rapid prototyping for bone tissue engineering Macromolecular Research. ,vol. 22, pp. 882- 887 ,(2014) , 10.1007/S13233-014-2119-5
Anand S. Badami, Michelle R. Kreke, M. Shane Thompson, Judy S. Riffle, Aaron S. Goldstein, Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials. ,vol. 27, pp. 596- 606 ,(2006) , 10.1016/J.BIOMATERIALS.2005.05.084
Heungsoo Shin, Seongbong Jo, Antonios G. Mikos, Biomimetic materials for tissue engineering. Biomaterials. ,vol. 24, pp. 4353- 4364 ,(2003) , 10.1016/S0142-9612(03)00339-9
Helena N Chia, Benjamin M Wu, None, High-resolution direct 3D printed PLGA scaffolds: print and shrink. Biofabrication. ,vol. 7, pp. 015002- ,(2014) , 10.1088/1758-5090/7/1/015002
Toshihiro Kasuga, Hirotaka Maeda, Katsuhito Kato, Masayuki Nogami, Ken-ichiro Hata, Minoru Ueda, Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite) Biomaterials. ,vol. 24, pp. 3247- 3253 ,(2003) , 10.1016/S0142-9612(03)00190-X
Gen-Liang Ji, Bao-Ku Zhu, Zhen-Yu Cui, Chun-Fang Zhang, You-Yi Xu, PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery Polymer. ,vol. 48, pp. 6415- 6425 ,(2007) , 10.1016/J.POLYMER.2007.08.049
Douglas R. Lloyd, Kevin E. Kinzer, H.S. Tseng, Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation Journal of Membrane Science. ,vol. 52, pp. 239- 261 ,(1990) , 10.1016/S0376-7388(00)85130-3
E. SADA, H. KUMAZAWA, Y. MURAKAMI, Hydrothermal synthesis of crystalline hydroxyapatite ultrafine particles Chemical Engineering Communications. ,vol. 103, pp. 57- 64 ,(1991) , 10.1080/00986449108910862