Optimal G-closure bounds via stability under lamination

作者: G. W. Milton , V. Nesi

DOI: 10.1007/S002050050186

关键词:

摘要: Optimal bounds for a two dimensional G-closure problem are proved. They obtained by combining together derived using fine properties of quasiconformal mappings and stability property the which is known as under lamination.

参考文章(20)
ZVI HASHIN, THEORY OF COMPOSITE MATERIALS Mechanics of Composite Materials#R##N#Proceedings of the Fifth Symposium on Naval Structural Mechanics. pp. 201- 242 ,(1970) , 10.1016/B978-0-08-006421-5.50017-4
A. M. Dykhne, Conductivity of a Two-dimensional Two-phase System Journal of Experimental and Theoretical Physics. ,vol. 32, pp. 63- ,(1971)
L. V. Gibiansky, A. V. Cherkaev, Design of Composite Plates of Extremal Rigidity Birkhäuser, Boston, MA. pp. 95- 137 ,(1997) , 10.1007/978-1-4612-2032-9_5
Marco Avellaneda, Graeme W. Milton, Optimal bounds on the effective bulk modulus of polycrystals Siam Journal on Applied Mathematics. ,vol. 49, pp. 824- 837 ,(1989) , 10.1137/0149048
M. Avellaneda, A.V. Cherkaev, L.V. Gibiansky, G.W. Milton, M. Rudelson, A complete characterization of the possible bulk and shear moduli of planar polycrystals Journal of The Mechanics and Physics of Solids. ,vol. 44, pp. 1179- 1218 ,(1996) , 10.1016/0022-5096(96)00018-X
Alain Bensoussan, Jacques-Louis Lions, George Papanicolaou, T. K. Caughey, Asymptotic Analysis of Periodic Structures Journal of Applied Mechanics. ,vol. 46, pp. 477- 477 ,(1979) , 10.1115/1.3424588