The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements

作者: Ramon Codina , Eugenio Oñate , Miguel Cervera

DOI: 10.1016/0045-7825(92)90149-E

关键词:

摘要: Abstract In this paper the functions of Peclet number that appear in intrinsic time streamline upwind/Petrov-Galerkin (SUPG) formulation are analyzed for quadratic elements. Some related issues such as computation characteristic element length and introduction source terms one-dimensional model problem also addressed.

参考文章(23)
William Frank Hughes, Analysis of Numerical Methods ,(1966)
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique. ,vol. 8, pp. 129- 151 ,(1974) , 10.1051/M2AN/197408R201291
Peter F G Hansbo, Claes Johnson, Anders Szepessy, On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws Mathematics of Computation. ,vol. 54, pp. 107- 129 ,(1990) , 10.2307/2008684
Thomas J.R. Hughes, Leopoldo P. Franca, Gregory M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations Computer Methods in Applied Mechanics and Engineering. ,vol. 73, pp. 173- 189 ,(1989) , 10.1016/0045-7825(89)90111-4
Augusto Cesar Galeão, Eduardo Gomes Dutra do Carmo, A consistent approximate upwind Petrov—Galerkin method for convection-dominated problems Applied Mechanics and Engineering. ,vol. 68, pp. 83- 95 ,(1988) , 10.1016/0045-7825(88)90108-9
Claes Johnson, Uno Nävert, Juhani Pitkäranta, Finite element methods for linear hyperbolic problems Computer Methods in Applied Mechanics and Engineering. ,vol. 45, pp. 285- 312 ,(1984) , 10.1016/0045-7825(84)90158-0