Two-dimensional stability of large amplitude langmuir waves and solitons

作者: E. Infeld , J. Ziemkiewicz

DOI: 10.1016/0375-9601(81)90153-5

关键词:

摘要: Abstract The two-dimensional stability of nonlinear wave and soliton solutions the exponentially Schrodinger equation is examined. All stationary entities are unstable to perturbations. It found that saturable nonlinearity decreases growth rates in comparison with small amplitude limit.

参考文章(5)
P. Kaw, Filamentation and trapping of electromagnetic radiation in plasmas Physics of Fluids. ,vol. 16, pp. 1522- 1525 ,(1973) , 10.1063/1.1694552
Thomas Howard Stix, The theory of plasma waves ,(1962)
M. D’Evelyn, G. J. Morales, Properties of large amplitude Langmuir solitons Physics of Fluids. ,vol. 21, pp. 1997- 2008 ,(1978) , 10.1063/1.862144
D. Anderson, A. Bondeson, M. Lisak, Transverse instability of soliton solutions to nonlinear Schrödinger equations Journal of Plasma Physics. ,vol. 21, pp. 259- 266 ,(1979) , 10.1017/S0022377800021826
G. Rpwlands, Stability of non-linear plasma waves Journal of Plasma Physics. ,vol. 3, pp. 567- 576 ,(1969) , 10.1017/S0022377800004621