Asymptotic optimality conditions for linear semi-infinite programming

作者: Y. Liu , M.A. Goberna

DOI: 10.1080/02331934.2015.1051533

关键词:

摘要: In this paper, the classical KKT, complementarity and Lagrangian saddle-point conditions are generalized to obtain equivalent characterizing optimality of a feasible solution general linear semi-infinite programming problem without constraint qualifications. The method paper differs from usual convex analysis methods its main idea is rooted in some fundamental properties programming.

参考文章(20)
M. A López-Cerda, M. A Goberna, Linear Semi-Infinite Optimization ,(1998)
M. D. Fajardo, M. A. López, Locally Farkas–Minkowski Systems in Convex Semi-Infinite Programming Journal of Optimization Theory and Applications. ,vol. 103, pp. 313- 335 ,(1999) , 10.1023/A:1021700702376
Lionel Thibault, Sequential Convex Subdifferential Calculus and Sequential Lagrange Multipliers Siam Journal on Control and Optimization. ,vol. 35, pp. 1434- 1444 ,(1997) , 10.1137/S0363012995287714
M. A. Goberna, M. A. López, M. I. Todorov, Extended Active Constraints in Linear Optimization with Applications Siam Journal on Optimization. ,vol. 14, pp. 608- 619 ,(2003) , 10.1137/S1052623402401579
Chong Li, Xiaopeng Zhao, Yaohua Hu, QUASI-SLATER AND FARKAS-MINKOWSKI QUALIFICATIONS FOR SEMI-INFINITE PROGRAMMING WITH APPLICATIONS ∗ Siam Journal on Optimization. ,vol. 23, pp. 2208- 2230 ,(2013) , 10.1137/130911287
Rubén Puente, Virginia N. Vera de Serio, Locally Farkas-Minkowski Linear Inequality Systems Top. ,vol. 7, pp. 103- 121 ,(1999) , 10.1007/BF02564714
Yanqun Liu, , Ming-Fang Ding, A ladder method for linear semi-infinite programming Journal of Industrial and Management Optimization. ,vol. 10, pp. 397- 412 ,(2013) , 10.3934/JIMO.2014.10.397
Chong Li, K. F. Ng, On Constraint Qualification for an Infinite System of Convex Inequalities in a Banach Space Siam Journal on Optimization. ,vol. 15, pp. 488- 512 ,(2005) , 10.1137/S1052623403434693
J.E Rubio, Optimal control problems with unbounded constraint sets Optimization. ,vol. 48, pp. 191- 210 ,(2000) , 10.1080/02331930008844501