Sobolev embeddings for variable exponent riesz potentials on metric spaces

作者: Toshihide Futamura , Yoshihiro Mizuta , Tetsu Shimomura

DOI:

关键词:

摘要: In the metric space setting, our aim in this paper is to deal with boundedness of Hardy{Littlewood maximal functions generalized Lebesgue spaces L p( ) when satises a log-Holder condition. As an application functions, we study Sobolev's embedding theorem for variable exponent Riesz potentials on space.

参考文章(26)
C. J. Neugebauer, D. Cruz-Uribe, A. Firorenza, The maximal function on variable spaces. Annales Academiae Scientiarum Fennicae. Mathematica. ,vol. 28, pp. 223- 238 ,(2003)
Bohumír Opic, Petr Gurka, David E. Edmunds, Double exponential integrability, Bessel potentials and embedding theorems Studia Mathematica. ,vol. 115, pp. 151- 181 ,(1995)
W. Orlicz, Über konjugierte Exponentenfolgen Studia Mathematica. ,vol. 3, pp. 200- 211 ,(1931) , 10.4064/SM-3-1-200-211
David R. Adams, Lars Inge Hedberg, Function Spaces and Potential Theory ,(1995)
Michael Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory Lecture Notes in Mathematics. ,vol. 1748, ,(2000) , 10.1007/BFB0104029
Petteri Harjulehto, Peter Hästö, Mikko Pere, Variable Exponent Lebesgue Spaces on Metric Spaces: The Hardy-Littlewood Maximal Operator Real analysis exchange. ,vol. 30, pp. 87- 104 ,(2005) , 10.14321/REALANALEXCH.30.1.0087
Julian Musielak, Orlicz Spaces and Modular Spaces ,(1983)
義弘 水田, Potential theory in Euclidean spaces Gakkōtosho. ,(1996)
David E. Edmunds, Jiří Rákosník, Sobolev Embeddings with Variable Exponent, II Mathematische Nachrichten. ,vol. 246, pp. 53- 67 ,(2002) , 10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO;2-T