Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.

作者: Elizabeth A. Pillar , Robert C. Camm , Marcelo I. Guzman

DOI: 10.1021/ES504094X

关键词:

摘要: Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture humic-like substances (HULIS). Because further processing secondary organic aerosols (SOA) can continue mediated by a mechanism ozonolysis at interfaces, better understanding about how these reactions proceed air–water interface is needed. This work shows catechol, molecular probe oxygenated present SOA, contribute interfacial reactive species that enhance production HULIS under atmospheric conditions. Reactive semiquinone are quickly produced upon encounter 40 ppbv–6.0 ppmv O3(g) microdroplets containing [catechol] = 1–150 μM. While previous pathway results instantaneous formation mono- polyhydroxylated rings (PHA) chromophoric quinones (PHQ), dif...

参考文章(53)
R. P. Brown, Effect of temperature Springer, Cham. pp. 305- 331 ,(1996) , 10.1007/978-94-011-0529-3_15
Olivier Boucher, David Randall, Paulo Artaxo, Christopher Bretherton, Gragam Feingold, Piers Forster, V-M Kerminen, Yutaka Kondo, Hong Liao, U. Lohmann, Philip Rasch, SK Satheesh, Steven Sherwood, Björn Stevens, Xiao-Ye Zhang, None, Clouds and Aerosols Climate change 2013 : the physical science basis : Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. pp. 571- 657 ,(2013)
Clemens von Sonntag, Urs von Gunten, Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications Water intelligence online. ,vol. 11, pp. 9781780400839- ,(2012) , 10.2166/9781780400839
R. E. Huie, V. L. Orkin, M. J. Kurylo, D. M. Wilmouth, J. R. Barker, C. E. Kolb, J. P. D. Abbatt, S. P. Sander, J. B. Burkholder, P. H. Wine, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 Jet Propulsion Laboratory. ,(2015)
George V. Buxton, Clive L. Greenstock, W. Phillips Helman, Alberta B. Ross, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution Journal of Physical and Chemical Reference Data. ,vol. 17, pp. 513- 886 ,(1988) , 10.1063/1.555805
Mohd Talib Latif, Peter Brimblecombe, SURFACTANTS IN ATMOSPHERIC AEROSOLS Environmental Science & Technology. ,vol. 38, pp. 6501- 6506 ,(2004) , 10.1021/ES049109N
J. Ofner, H.-U. Krüger, C. Zetzsch, Time Resolved Infrared Spectroscopy of Formation and Processing of Secondary Organic Aerosol Zeitschrift für Physikalische Chemie. ,vol. 224, pp. 1171- 1183 ,(2010) , 10.1524/ZPCH.2010.6146
S. Enami, C. D. Vecitis, J. Cheng, M. R. Hoffmann, A. J. Colussi, Electrospray mass spectrometric detection of products and short-lived intermediates in aqueous aerosol microdroplets exposed to a reactive gas. Journal of Physical Chemistry A. ,vol. 111, pp. 13032- 13037 ,(2007) , 10.1021/JP075505R
Roman Flyunt, Achim Leitzke, Gertraud Mark, Eino Mvula, Erika Reisz, Roland Schick, Clemens von Sonntag, Determination of •OH, O2•-, and Hydroperoxide Yields in Ozone Reactions in Aqueous Solution† Journal of Physical Chemistry B. ,vol. 107, pp. 7242- 7253 ,(2003) , 10.1021/JP022455B