On Lie algebras in braided categories

作者: Bodo Pareigis

DOI: 10.4064/-40-1-139-158

关键词:

摘要: The set of primitive elements a Hopf algebra in the braided category group graded vector spaces (with commutative group) carry structure generalized Lie algebra. In particular derivations an associative this structure. multiplications consist certain n-ary partially defined satisfying antisymmetry and Jacobi identities. This generalizes concept super algebras color algebras. We show that universal enveloping exist. They are (braided) explains many constructions noncommutative noncocommutative literature.

参考文章(6)
Bodo Pareigis, On Lie Algebras in the Category of Yetter-Drinfeld Modules Applied Categorical Structures. ,vol. 6, pp. 151- 175 ,(1998) , 10.1023/A:1008618014735
E. J. Taft, The Order of the Antipode of Finite-dimensional Hopf Algebra Proceedings of the National Academy of Sciences of the United States of America. ,vol. 68, pp. 2631- 2633 ,(1971) , 10.1073/PNAS.68.11.2631
David E Radford, The structure of Hopf algebras with a projection Journal of Algebra. ,vol. 92, pp. 322- 347 ,(1985) , 10.1016/0021-8693(85)90124-3
S. Majid, Cross Products by Braided Groups and Bosonization Journal of Algebra. ,vol. 163, pp. 165- 190 ,(1994) , 10.1006/JABR.1994.1011
D. Fischman, S. Montgomery, A Schur Double Centralizer Theorem for Cotriangular Hopf Algebras and Generalized Lie Algebras Journal of Algebra. ,vol. 168, pp. 594- 614 ,(1994) , 10.1006/JABR.1994.1246
George E. Andrews, The theory of partitions ,(1976)