Superparsing: scalable nonparametric image parsing with superpixels

作者: Joseph Tighe , Svetlana Lazebnik

DOI: 10.1007/978-3-642-15555-0_26

关键词:

摘要: This paper presents a simple and effective nonparametric approach to the problem of image parsing, or labeling regions (in our case, superpixels produced by bottom-up segmentation) with their categories. requires no training, it can easily scale datasets tens thousands images hundreds labels. It works scene-level matching global descriptors, followed superpixel-level local features efficient Markov random field (MRF) optimization for incorporating neighborhood context. Our MRF setup also compute simultaneous into semantic classes (e.g., tree, building, car) geometric (sky, vertical, ground). system outperforms state-of-the-art non-parametric method based on SIFT Flow dataset 2,688 33 In addition, we report per-pixel rates larger 15,150 170 To knowledge, this is first complete evaluation parsing size, establishes new benchmark problem.

参考文章(21)
Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, William T. Freeman, SIFT Flow: Dense Correspondence across Different Scenes Lecture Notes in Computer Science. pp. 28- 42 ,(2008) , 10.1007/978-3-540-88690-7_3
Geremy Heitz, Daphne Koller, Learning Spatial Context: Using Stuff to Find Things Lecture Notes in Computer Science. pp. 30- 43 ,(2008) , 10.1007/978-3-540-88682-2_4
Aude Oliva, Antonio Torralba, Building the gist of a scene: the role of global image features in recognition. Progress in Brain Research. ,vol. 155, pp. 23- 36 ,(2006) , 10.1016/S0079-6123(06)55002-2
Pedro F. Felzenszwalb, Daniel P. Huttenlocher, Efficient Graph-Based Image Segmentation International Journal of Computer Vision. ,vol. 59, pp. 167- 181 ,(2004) , 10.1023/B:VISI.0000022288.19776.77
Andrew Rabinovich, Andrea Vedaldi, Carolina Galleguillos, Eric Wiewiora, Serge Belongie, Objects in Context international conference on computer vision. pp. 1- 8 ,(2007) , 10.1109/ICCV.2007.4408986
Xuming He, Richard S Zemel, Miguel A Carreira-Perpinán, None, Multiscale conditional random fields for image labeling computer vision and pattern recognition. ,vol. 2, pp. 695- 703 ,(2004) , 10.1109/CVPR.2004.1315232
Jamie Shotton, Matthew Johnson, Roberto Cipolla, Semantic texton forests for image categorization and segmentation computer vision and pattern recognition. pp. 1- 8 ,(2008) , 10.1109/CVPR.2008.4587503
V. Kolmogorov, R. Zabih, What energy functions can be minimized via graph cuts IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 26, pp. 147- 159 ,(2004) , 10.1109/TPAMI.2004.1262177
James Hays, Alexei A. Efros, IM2GPS: estimating geographic information from a single image computer vision and pattern recognition. pp. 1- 8 ,(2008) , 10.1109/CVPR.2008.4587784
Chunhui Gu, Joseph J. Lim, Pablo Arbelaez, Jitendra Malik, Recognition using regions computer vision and pattern recognition. pp. 1030- 1037 ,(2009) , 10.1109/CVPR.2009.5206727