An efficient algorithm for constructing minimal trellises for codes over finite Abelian groups

作者: V.V. Vazirani , H. Saran , B.S. Rajan

DOI: 10.1109/SFCS.1996.548473

关键词:

摘要: We present an efficient algorithm for computing the minimal trellis a group code over finite Abelian group, given generator matrix code. also show how to compute succinct representation of such code, and algorithms that use this information efficiently local descriptions trellis. This extends work Kschischang Sorokine (1995), who handled case linear codes fields. An important application our is construction trellises lattices. A key step in handling cyclic groups C/sub p//spl alpha/, where p prime. Such can be viewed as submodule ring Z/sub alpha/. Because presence zero-divisors ring, submodules do not share useful properties vector spaces. get around difficulty by restricting notion combination p-linear combination, introducing p-generator sequence, which enjoys similar space.

参考文章(25)
Miles Reid, Hideyuki Matsumura, Commutative Ring Theory ,(1989)
A. Lafourcade-Jumenbo, A. Vardy, On trellis complexity of block codes: lower bounds international symposium on information theory. pp. 124- ,(1995) , 10.1109/ISIT.1995.531328
F. Fagnani, S. Zampieri, Dynamical systems and convolutional codes over finite Abelian groups IEEE Transactions on Information Theory. ,vol. 42, pp. 1892- 1912 ,(1996) , 10.1109/18.556683
H.-A. Loeliger, T. Mittelholzer, Convolutional codes over groups IEEE Transactions on Information Theory. ,vol. 42, pp. 1660- 1686 ,(1996) , 10.1109/18.556664
A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Sole, The Z/sub 4/-linearity of Kerdock, Preparata, Goethals, and related codes IEEE Transactions on Information Theory. ,vol. 40, pp. 301- 319 ,(1994) , 10.1109/18.312154
V.V. Vazirani, H. Saran, B.S. Rajan, An efficient algorithm for constructing minimal trellises for codes over finite abelian groups IEEE Transactions on Information Theory. ,vol. 42, pp. 1839- 1854 ,(1996) , 10.1109/18.556679
Hans-Andrea Loeliger, G. David Forney, Thomas Mittelholzer, Mitchell D. Trott, Minimality and observability of group systems Linear Algebra and its Applications. pp. 937- 963 ,(1994) , 10.1016/0024-3795(94)90375-1
D.J. Muder, Minimal trellises for block codes IEEE Transactions on Information Theory. ,vol. 34, pp. 1049- 1053 ,(1988) , 10.1109/18.21228
M. Isaksson, L.H. Zetterberg, Block-coded M-PSK modulation over GF(M) IEEE Transactions on Information Theory. ,vol. 39, pp. 337- 346 ,(1993) , 10.1109/18.212265