Rectangle and Square Representations of Planar Graphs

作者: Stefan Felsner

DOI: 10.1007/978-1-4614-0110-0_12

关键词:

摘要: In the first part of this survey, we consider planar graphs that can be represented by a dissections rectangle into rectangles. rectangular drawings, corners rectangles represent vertices. The graph obtained taking as vertices and contacts edges is dual. visibility segment contact graphs, correspond to horizontal or vertical segments dissection. Special orientations turn out helpful when dealing with characterization representation questions. Therefore, look at prescribed degrees, bipolar orientations, separating decompositions, transversal structures.

参考文章(58)
Takao Nishizeki, Saidur Rahman, Planar graph drawing ,(2004)
Eric Fusy, Combinatoire des cartes planaires et applications algorithmiques Palaiseau, Ecole polytechnique. ,(2007)
Shay Mozes, Christian Wulff-Nilsen, Shortest paths in planar graphs with real lengths in O(n log 2 n/ log log n) time european symposium on algorithms. pp. 206- 217 ,(2010) , 10.1007/978-3-642-15781-3_18
Clemens Huemer, Stefan Felsner, David Orden, Sarah Kappes, Binary Labelings for Plane Quadrangulations and their Relatives Discrete Mathematics & Theoretical Computer Science. ,vol. 12, pp. 115- 138 ,(2010)
Markus Eiglsperger, Sándor P. Fekete, Gunnar W. Klau, Orthogonal graph drawing Drawing graphs. pp. 121- 171 ,(2001) , 10.1007/3-540-44969-8_6
Adam L. Buchsbaum, Emden R. Gansner, Cecilia M. Procopiuc, Suresh Venkatasubramanian, Rectangular layouts and contact graphs ACM Transactions on Algorithms. ,vol. 4, pp. 8- ,(2008) , 10.1145/1328911.1328919
Richard W. Kenyon, Scott Sheffield, Dimers, tilings and trees Journal of Combinatorial Theory, Series B. ,vol. 92, pp. 295- 317 ,(2004) , 10.1016/J.JCTB.2004.07.001
Jérémie Chalopin, Daniel Gonçalves, Every planar graph is the intersection graph of segments in the plane Proceedings of the 41st annual ACM symposium on Symposium on theory of computing - STOC '09. pp. 631- 638 ,(2009) , 10.1145/1536414.1536500