The geometry of tensor calculus, I

作者: André Joyal , Ross Street

DOI: 10.1016/0001-8708(91)90003-P

关键词:

摘要: This paper defines and proves the correctness of appropriate string diagrams for various kinds monoidal categories with duals. Mathematics Subject Classifications (1991). 18D10, 52B11, 53A45 , 57M25, 68Q10, 82B23.

参考文章(34)
GÉRARD XAVIER VIENNOT, Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas Annals of the New York Academy of Sciences. ,vol. 576, pp. 542- 570 ,(1989) , 10.1111/J.1749-6632.1989.TB16436.X
G.M Kelly, Tensor products in categories Journal of Algebra. ,vol. 2, pp. 15- 37 ,(1965) , 10.1016/0021-8693(65)90022-0
A.J Power, A 2-categorical pasting theorem Journal of Algebra. ,vol. 129, pp. 439- 445 ,(1990) , 10.1016/0021-8693(90)90229-H
P. Cartier, D. Foata, Problèmes combinatoires de commutation et réarrangements Lecture Notes in Mathematics. ,(1969) , 10.1007/BFB0079468
E. Artin, Theory of Braids The Annals of Mathematics. ,vol. 48, pp. 101- ,(1947) , 10.2307/1969218
Jean-Yves Girard, Linear logic Theoretical Computer Science archive. ,vol. 50, pp. 1- ,(1987) , 10.1016/0304-3975(87)90045-4
Jeffrey D. Vaaler, Some extremal functions in Fourier analysis Bulletin of the American Mathematical Society. ,vol. 12, pp. 183- 216 ,(1985) , 10.1090/S0273-0979-1985-15349-2
G. M. Kelly, Many-variable functorial calculus. I. Coherence in Categories. pp. 66- 105 ,(1972) , 10.1007/BFB0059556