Error-correcting output codes: a general method for improving multiclass inductive learning programs

作者: Thomas G. Dietterich , Ghulum Bakiri

DOI:

关键词:

摘要: … With decision trees, n separate decision trees are learned, one for each bit position in the output code. New values of x are classified by evaluating each of the n binary functions to …

参考文章(11)
Thomas G. Dietterich, Hermann Hild, Ghulum Bakiri, A comparative study of ID3 and backpropagation for English text-to-speech mapping international conference on machine learning. pp. 24- 31 ,(1990) , 10.1016/B978-1-55860-141-3.50007-9
T. J. Sejnowski, Parallel networks that learn to pronounce English text Complex Systems. ,vol. 1, pp. 145- 168 ,(1987)
Richard A Olshen, Charles J Stone, Leo Breiman, Jerome H Friedman, Classification and regression trees ,(1983)
L. G. Valiant, A theory of the learnable symposium on the theory of computing. ,vol. 27, pp. 1134- 1142 ,(1984) , 10.1145/800057.808710
Kevin J. Lang, Alex H. Waibel, Geoffrey E. Hinton, A time-delay neural network architecture for isolated word recognition Neural Networks. ,vol. 3, pp. 23- 43 ,(1990) , 10.1016/0893-6080(90)90044-L
R.C. Bose, D.K. Ray-Chaudhuri, On a class of error correcting binary group codes Information & Computation. ,vol. 3, pp. 68- 79 ,(1960) , 10.1016/S0019-9958(60)90287-4
J.R. Quinlan, Simplifying decision trees International Journal of Human-computer Studies \/ International Journal of Man-machine Studies. ,vol. 51, pp. 221- 234 ,(1987) , 10.1016/S0020-7373(87)80053-6
J.R. Quinlan, Induction of Decision Trees Machine Learning. ,vol. 1, pp. 81- 106 ,(1986) , 10.1023/A:1022643204877