Colour image segmentation using perceptual colour difference saliency algorithm

作者: Taiwo Tunmike Bukola

DOI:

关键词:

摘要: … The K-means clustering algorithm is the main and one of the most widely used partitional clustering algorithms. The algorithm was proposed over 50 years ago and has a rich, diverse …

参考文章(291)
Adrian Stetco, Xiao-Jun Zeng, John Keane, Fuzzy C-means++ Expert Systems With Applications. ,vol. 42, pp. 7541- 7548 ,(2015) , 10.1016/J.ESWA.2015.05.014
Damilola A. Okuboyejo, Oludayo O. Olugbara, Solomon A. Odunaike, CLAHE Inspired Segmentation of Dermoscopic Images Using Mixture of Methods Transactions on Engineering Technologies. pp. 355- 365 ,(2014) , 10.1007/978-94-017-9115-1_27
Nameirakpam Dhanachandra, Khumanthem Manglem, Yambem Jina Chanu, Image Segmentation Using K -means Clustering Algorithm and Subtractive Clustering Algorithm Procedia Computer Science. ,vol. 54, pp. 764- 771 ,(2015) , 10.1016/J.PROCS.2015.06.090
Yong Peng, Wei-Long Zheng, Bao-Liang Lu, An unsupervised discriminative extreme learning machine and its applications to data clustering Neurocomputing. ,vol. 174, pp. 250- 264 ,(2016) , 10.1016/J.NEUCOM.2014.11.097
Mahdi Maktabdar Oghaz, Mohd Aizaini Maarof, Anazida Zainal, Mohd Foad Rohani, S. Hadi Yaghoubyan, A Hybrid Color Space for Skin Detection Using Genetic Algorithm Heuristic Search and Principal Component Analysis Technique PLOS ONE. ,vol. 10, pp. e0134828- ,(2015) , 10.1371/JOURNAL.PONE.0134828
Laurent Busin, Nicolas Vandenbroucke, Ludovic Macaire, Color Spaces and Image Segmentation Advances in Imaging and Electron Physics. ,vol. 151, pp. 65- 168 ,(2008) , 10.1016/S1076-5670(07)00402-8
S. Auwatanamongkol, S. Deelers, Enhancing K-Means Algorithm with Initial Cluster Centers Derived from Data Partitioning along the Data Axis with the Highest Variance International Journal of Physical and Mathematical Sciences. ,vol. 1, pp. 518- 523 ,(2007)
Bo-Yeong Kang, Dae-Won Kim, Qing Li, Spatial Homogeneity-Based Fuzzy c-Means Algorithm for Image Segmentation Fuzzy Systems and Knowledge Discovery. pp. 462- 469 ,(2005) , 10.1007/11539506_59