Coalgebraic Approach to the Loday Infinity Category, Stem Differential for 2n-ary Graded and Homotopy Algebras

作者: Mourad Ammar , Norbert Poncin

DOI: 10.5802/AIF.2525

关键词:

摘要: We define a graded twisted-coassociative coproduct on the tensor algebra TW of anyZ n -graded vector space W . If is desuspension # V , coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) this coalgebra are 1to-1 with sequences p s, s ‚ 1, s-linear maps Z Loday structures that we call infinity ). prove minimal model theorem for algebras, investigate morphisms, and observe Lod¥ category contains L¥ as subcategory. Moreover, Lie bracket gives rise to “stem” cochain spaces Loday, infinity, 2n-ary algebras (the latter extend corresponding in sense Michor Vinogradov). These algebraic have square zero respect stem bracket, so obtain natural cohomological theories good properties formal deformations. The restricts Nijenhuis-Richardson and— up isomorphism—to Grabowski-Marmo brackets last extends SchoutenNijenhuis antisymmetric first order polydifferential operators), it encodes, beyond already mentioned cohomologies, those Lie, Poisson, Jacobi, well algebras.

参考文章(35)
M. Wilde, P. Lecomte, Formal Deformations of the Poisson Lie Algebra of a Symplectic Manifold and Star-Products. Existence, Equivalence, Derivations Deformation Theory of Algebras and Structures and Applications. pp. 897- 960 ,(1988) , 10.1007/978-94-009-3057-5_18
Mikolaj Rotkiewicz, Cohomology ring of n-Lie algebras. Extracta Mathematicae. ,vol. 20, pp. 219- 232 ,(2005)
A. M. Vinogradov, M. M. Vinogradov, Graded multiple analogs of Lie algebras Acta Applicandae Mathematicae. ,vol. 72, pp. 183- 197 ,(2002) , 10.1023/A:1015281004171
YURI L. DALETSKII, LEON A. TAKHTAJAN, Leibniz and Lie Algebra Structures for Nambu Algebra Letters in Mathematical Physics. ,vol. 39, pp. 127- 141 ,(1997) , 10.1023/A:1007316732705
Steven Shnider, James Stasheff, Martin Markl, Operads in algebra, topology, and physics ,(2002)
Peter W. Michor, Alexandre M. Vinogradov, n-ary Lie and Associative Algebras arXiv: Quantum Algebra. ,(1998)
André Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées Journal of Differential Geometry. ,vol. 12, pp. 253- 300 ,(1977) , 10.4310/JDG/1214433987
Manuel de Leon, Juan C. Marrero, Edith Padron, Belen Lopez, Lichnerowicz-Jacobi cohomology and homology of Jacobi manifolds: modular class and duality arXiv: Differential Geometry. ,(1999)
Norbert Poncin, Premier et deuxième espaces de cohomologie de l'algèbre de lié des opérateurs différentiels sur une variété, a coefficients dans les fonctions Bulletin de la Société Royale des Sciences de Liège. ,vol. 67, pp. 291- 337 ,(1998)