Semi-supervised anomaly detection algorithms: A comparative summary and future research directions

作者: Octavio Loyola-González , Miguel Angel Medina-Pérez , Kim-Kwang Raymond Choo , Miryam Elizabeth Villa-Pérez , Juan Carlos Velazco-Rossell

DOI: 10.1016/J.KNOSYS.2021.106878

关键词:

摘要: … While anomaly detection is relatively well-studied, it remains a topic of … anomaly detection approaches, by empirically studying the performance of 29 semi-supervised anomaly detection …

参考文章(129)
Levent Ertöz, Aleksandar Lazarevic, Vipin Kumar, Jaideep Srivastava, Aysel Ozgur, A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection. siam international conference on data mining. pp. 25- 36 ,(2003)
Kanoksri Sarinnapakorn, Mei-Ling Shyu, Shu-Ching Chen, LiWu Chang, A Novel Anomaly Detection Scheme Based on Principal Component Classifier international conference on data mining. pp. 172- 179 ,(2003)
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek, Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data Advances in Knowledge Discovery and Data Mining. pp. 831- 838 ,(2009) , 10.1007/978-3-642-01307-2_86
Bartosz Krawczyk, Michał Woźniak, Francisco Herrera, On the usefulness of one-class classifier ensembles for decomposition of multi-class problems Pattern Recognition. ,vol. 48, pp. 3969- 3982 ,(2015) , 10.1016/J.PATCOG.2015.06.001
Tomáš Pevný, Loda: Lightweight on-line detector of anomalies Machine Learning. ,vol. 102, pp. 275- 304 ,(2016) , 10.1007/S10994-015-5521-0
Oleksiy Mazhelis, One-class classifiers : a review and analysis of suitability in the context of mobile-masquerader detection South African Computer Journal. ,vol. 2006, pp. 29- 48 ,(2006)
Frédéric Ratle, Mikhail Kanevski, Anne-Laure Terrettaz-Zufferey, Pierre Esseiva, Olivier Ribaux, A Comparison of One-Class Classifiers for Novelty Detection in Forensic Case Data Intelligent Data Engineering and Automated Learning - IDEAL 2007. pp. 67- 76 ,(2007) , 10.1007/978-3-540-77226-2_8
Fabrizio Angiulli, Clara Pizzuti, Fast Outlier Detection in High Dimensional Spaces european conference on principles of data mining and knowledge discovery. pp. 15- 26 ,(2002) , 10.1007/3-540-45681-3_2