Minimum Fisher information spectral analysis

作者: V. Zivojnovic , D. Noll

DOI: 10.1109/ICASSP.1997.604786

关键词:

摘要: Minimizing the Fisher information measure over set of power spectrum densities fitting a finite number autocorrelation lag constraints is treated. Due to an explicit control derivative values densities, produces useful smoothing effect. The based estimate exhibits improved characteristics compared maximum entropy approach proposed by Burg (1967). We show that resulting positive, and along with constraints, satisfies generalized Riccati differential equation. In general, true may be obtained only numerically integrating corresponding boundary value problem. For real time applications, we therefore propose fast stable approximate solution in trigonometric form. Although suboptimal, has proven advantageous especially for flat spectra. presented theory verified on simulated examples.

参考文章(17)
V. Zivojnovic, A robust accuracy improvement method for blind identification using higher order statistics IEEE International Conference on Acoustics Speech and Signal Processing. ,vol. 4, pp. 516- 519 ,(1993) , 10.1109/ICASSP.1993.319709
J. K. Ord, A. M. Kagan, Yu. V. Linnik, C. R. Rao, B. Ramachandran, Characterization Problems in Mathematical Statistics. Journal of the Royal Statistical Society. Series A (General). ,vol. 138, pp. 576- 577 ,(1975) , 10.2307/2345228
J. P. Burg, Maximum entropy spectral analysis Proc. the 37th Meeting of the Society of Exploration Geophysicists. ,(1967)
A. van den Bos, Alternative interpretation of maximum entropy spectral analysis (Corresp.) IEEE Transactions on Information Theory. ,vol. 17, pp. 493- 494 ,(1971) , 10.1109/TIT.1971.1054660
Peter J. Huber, The 1972 Wald Lecture Robust Statistics: A Review Annals of Mathematical Statistics. ,vol. 43, pp. 1041- 1067 ,(1972) , 10.1214/AOMS/1177692459
J. M. Borwein, A. S. Lewis, D. Noll, Maximum entropy reconstruction using derivative information, part 1: Fisher information and convex duality Mathematics of Operations Research. ,vol. 21, pp. 442- 468 ,(1996) , 10.1287/MOOR.21.2.442
A. Papoulis, Maximum entropy and spectral estimation: A review IEEE Transactions on Acoustics, Speech, and Signal Processing. ,vol. 29, pp. 1176- 1186 ,(1981) , 10.1109/TASSP.1981.1163713
E.T. Jaynes, On the rationale of maximum-entropy methods Proceedings of the IEEE. ,vol. 70, pp. 939- 952 ,(1982) , 10.1109/PROC.1982.12425
J. Einbu, On the existence of a class of maximum-entropy probability density functions (Corresp.) IEEE Transactions on Information Theory. ,vol. 23, pp. 772- 775 ,(1977) , 10.1109/TIT.1977.1055784