A study on Robust Feature Image for Texture Classification and Detection

作者: Kang-In Hur , Jong-Young Ahn , Young-Sub Kim , Sang-Bum Kim

DOI:

关键词:

摘要: In this paper, we make up a feature image including spatial properties and statistical on image, format covariance matrices using region variance magnitudes. By it to texture classification, paper puts proposal for tough classification way illumination, noise rotation. Also offer minimalize performance time of integral expressing middle fast calculation sum. To estimate evaluation proposed way, use Brodatz so conduct addition histogram specification create rotation image. And then an experiment get better over 96%.

参考文章(5)
Wolfgang Förstner, Boudewijn Moonen, A Metric for Covariance Matrices Geodesy-The Challenge of the 3rd Millennium. pp. 299- 309 ,(2003) , 10.1007/978-3-662-05296-9_31
W.R. Schwartz, H. Pedrini, Texture classification based on spatial dependence features using co-occurrence matrices and Markov random fields international conference on image processing. ,vol. 1, pp. 239- 242 ,(2004) , 10.1109/ICIP.2004.1418734
Maria Petrou, Pedro García Sevilla, Image processing : dealing with texture John Wiley & Sons, Ltd. ,(2006) , 10.1002/047003534X
Yong Huang, Kap Luk Chan, Zhongyang Huang, An adaptive model for texture classification international conference on pattern recognition. ,vol. 3, pp. 893- 896 ,(2000) , 10.1109/ICPR.2000.903687
P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features computer vision and pattern recognition. ,vol. 1, pp. 511- 518 ,(2001) , 10.1109/CVPR.2001.990517