In search of \(\aleph _{0}\): how infinity can be created

作者: Markus Pantsar

DOI: 10.1007/S11229-015-0775-4

关键词:

摘要: In this paper I develop a philosophical account of actual mathematical infinity that does not demand ontologically or epistemologically problematic assumptions. The is based on simple metaphor in which we think indefinitely continuing processes as defining objects. It shown such valid terms practice, well line with empirical data arithmetical cognition.

参考文章(56)
George Lakoff, The Contemporary Theory of Metaphor Cambridge University Press. pp. 202- 251 ,(1993) , 10.1017/CBO9781139173865.013
Andreas Nieder, Stanislas Dehaene, Representation of number in the brain. Annual Review of Neuroscience. ,vol. 32, pp. 185- 208 ,(2009) , 10.1146/ANNUREV.NEURO.051508.135550
Brian Butterworth, Foundational numerical capacities and the origins of dyscalculia Trends in Cognitive Sciences. ,vol. 14, pp. 534- 541 ,(2010) , 10.1016/J.TICS.2010.09.007
FRANCIS MECHNER, Probability Relations within Response Sequences under Ratio Reinforcement. Journal of the Experimental Analysis of Behavior. ,vol. 1, pp. 109- 121 ,(1958) , 10.1901/JEAB.1958.1-109
Fei Xu, Elizabeth S. Spelke, Sydney Goddard, Number sense in human infants. Developmental Science. ,vol. 8, pp. 88- 101 ,(2005) , 10.1111/J.1467-7687.2005.00395.X
Susannah K. Revkin, Manuela Piazza, Véronique Izard, Laurent Cohen, Stanislas Dehaene, Does subitizing reflect numerical estimation Psychological Science. ,vol. 19, pp. 607- 614 ,(2008) , 10.1111/J.1467-9280.2008.02130.X
Tony J. Simon, Susan J. Hespos, Philippe Rochat, Do infants understand simple arithmetic? A replication of Wynn (1992) Cognitive Development. ,vol. 10, pp. 253- 269 ,(1995) , 10.1016/0885-2014(95)90011-X
Jessica F. Cantlon, Elizabeth M. Brannon, Shared system for ordering small and large numbers in monkeys and humans. Psychological Science. ,vol. 17, pp. 401- 406 ,(2006) , 10.1111/J.1467-9280.2006.01719.X