High capacity hydrogen storage: Basic aspects, new developments and milestones

作者: D. Pukazhselvan , Vinod Kumar , S.K. Singh

DOI: 10.1016/J.NANOEN.2012.05.004

关键词:

摘要: One of the major technical bottlenecks in hydrogen economy is storage. None absorption materials known today exclusively meets all required properties such as storage capacity (∼4.5 wt%), reaction enthalpy (15–24 kJ/mol), kinetics (0.02 g H2/s), cycle life (>10,000 cycles), desorption temperature (∼<100 °C), etc. However, there are striking recent developments; for example, development reactive hydride composites (RHC), nanoconfinement hydrides by nanoscaffold materials, synthesis new generation alkali–alkaline earth composite structures and air stable nanocomposite system, All these conceptually interesting candidates, but when it comes to practical reality, still significant problems need be circumvented. The present review therefore attempts throw some insight on almost classes materials. very basic aspects presented promise state art candidates indicated.

参考文章(261)
Sheldon G. Shore, Robert W. Parry, THE CRYSTALLINE COMPOUND AMMONIA-BORANE,1 H3NBH3 Journal of the American Chemical Society. ,vol. 77, pp. 6084- 6085 ,(1955) , 10.1021/JA01627A103
GA Olah, A Goeppert, GKS Prakash, Hydrogen as a future energy carrier Wiley-VCH Verlag GmbH & Co. KGaA. ,(2008) , 10.1002/9783527622894
M. Hirscher, Handbook of Hydrogen Storage Wiley-VCH. ,(2010)
B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts Advances in Catalysis. ,vol. 45, pp. 71- 129 ,(2000) , 10.1016/S0360-0564(02)45013-4
L.H. Long, The mechanisms of thermal decomposition of diborane and of interconversion of the boranes Journal of Inorganic and Nuclear Chemistry. ,vol. 32, pp. 1097- 1115 ,(1970) , 10.1016/0022-1902(70)80104-X
S Levesque, M Ciureanu, R Roberge, Theodore Motyka, Hydrogen storage for fuel cell systems with stationary applications— I. Transient measurement technique for packed bed evaluation International Journal of Hydrogen Energy. ,vol. 25, pp. 1095- 1105 ,(2000) , 10.1016/S0360-3199(00)00023-9
O. M. Løvvik, S. M. Opalka, Stability of Ti in NaAlH4 Applied Physics Letters. ,vol. 88, pp. 161917- ,(2006) , 10.1063/1.2197291
Z. Z. Fang, L. P. Ma, X. D. Kang, P. J. Wang, P. Wang, H. M. Cheng, In situ formation and rapid decomposition of Ti(BH4)3 by mechanical milling LiBH4 with TiF3 Applied Physics Letters. ,vol. 94, pp. 044104- ,(2009) , 10.1063/1.3076106
M. S. Dresselhaus, I. L. Thomas, Alternative energy technologies Nature. ,vol. 414, pp. 332- 337 ,(2001) , 10.1038/35104599