Further application of the Martin, Siggia, Rose formalism

作者: R Phythian

DOI: 10.1088/0305-4470/9/2/012

关键词:

摘要: The functional formalism developed by Martin, Siggia and Rose (see Phys. Rev. A, vol.8, p.423 (1973)) for classical statistical dynamics related problems is extended to a wider class of systems. These are characterized an equation motion in which Gaussian random forcing function appears multiplicatively.

参考文章(5)
P. C. Martin, E. D. Siggia, H. A. Rose, Statistical Dynamics of Classical Systems Physical Review A. ,vol. 8, pp. 423- 437 ,(1973) , 10.1103/PHYSREVA.8.423
Robert H. Kraichnan, Diffusion by a Random Velocity Field Physics of Fluids. ,vol. 13, pp. 22- 31 ,(1970) , 10.1063/1.1692799
J. B. Morton, S. Corrsin, Consolidated expansions for estimating the response of a randomly driven nonlinear oscillator Journal of Statistical Physics. ,vol. 2, pp. 153- 194 ,(1970) , 10.1007/BF01009737
Robert H. Kraichnan, Kolmogorov's Hypotheses and Eulerian Turbulence Theory Physics of Fluids. ,vol. 7, pp. 1723- 1734 ,(1964) , 10.1063/1.2746572
R Phythian, The operator formalism of classical statistical dynamics Journal of Physics A. ,vol. 8, pp. 1423- 1432 ,(1975) , 10.1088/0305-4470/8/9/011