Distinctive Feature Fusion for Recognition of Australian English Consonants

作者: David Martin Powers , Trent Wilson Lewis

DOI:

关键词:

摘要: Audio-Visual Automatic Speech Recognition offers to make speech recognition possible in noisy environments. Early and late fusion approaches dominate the field but may ignore linguistically relevant features. Distinctive features offer an alternative unit for research has shown that this is feasible on subsets of phonemes [1]. This paper outlines two extended models, multi-class binary, results suggest it achieve a 20dB gain over audio-only low SNR

参考文章(9)
Partha Niyogi, Jialin Zhong, Eric Petajan, Feature based representation for audio-visual speech recognition. AVSP. pp. 16- ,(1999)
Quentin Summerfield, Some preliminaries to a comprehensive account of audio-visual speech perception. Lawrence Erlbaum Associates, Inc. ,(1987)
Brian E. Walden, Robert A. Prosek, Allen A. Montgomery, Charlene K. Scherr, Carla J. Jones, Effects of Training on the Visual Recognition of Consonants Journal of Speech and Hearing Research. ,vol. 20, pp. 130- 145 ,(1977) , 10.1044/JSHR.2001.130
José R. Benkí, Analysis of English Nonsense Syllable Recognition in Noise Phonetica. ,vol. 60, pp. 129- 157 ,(2003) , 10.1159/000071450
G. Pomianos, C. Neti, G. Gravier, A. Garg, A.W. Senior, Recent advances in the automatic recognition of audiovisual speech Proceedings of the IEEE. ,vol. 91, pp. 1306- 1326 ,(2003) , 10.1109/JPROC.2003.817150
T.W. Lewis, D.M.W. Powers, Distinctive feature fusion for improved audio-visual phoneme recognition information sciences signal processing and their applications. ,vol. 1, pp. 62- 65 ,(2005) , 10.1109/ISSPA.2005.1580196
J. Bruce Millar, Roland Goecke, The Audio-Video Australian-English Speech Data Corpus AVOZES conference of the international speech communication association. pp. 2525- 2528 ,(2004)
Frédéric Berthommier, Audio-visual recognition of spectrally reduced speech AVSP. pp. 183- 188 ,(2001)