Floer simple manifolds and L-space intervals

作者: Jacob Rasmussen , Sarah Dean Rasmussen

DOI: 10.1016/J.AIM.2017.10.014

关键词:

摘要: Abstract An oriented three-manifold with torus boundary admits either no L-space Dehn filling, a unique or an interval of fillings. In the latter case, which we call “Floer simple,” construct invariant computes filling slopes from Turaev torsion and given slope interval's interior. As applications, give new proof classification Seifert fibered L-spaces over S 2 , prove special case conjecture Boyer Clay [6] about formed by gluing three-manifolds along torus.

参考文章(54)
Jonathan Hanselman, Splicing integer framed knot complements and bordered Heegaard Floer homology arXiv: Geometric Topology. ,(2014)
Jacob Rasmussen, Floer homology and knot complements arXiv: Geometric Topology. ,(2003)
Vladimir Turaev, Torsions of 3-dimensional Manifolds ,(2003)
David Gabai, Foliations and the topology of 3-manifolds Journal of Differential Geometry. ,vol. 18, pp. 445- 503 ,(1983) , 10.4310/JDG/1214437784
Ina Petkova, An absolute Z/2 grading on bordered Heegaard Floer homology arXiv: Geometric Topology. ,(2014)
Robert Lipshitz, Peter Ozsvath, Dylan Thurston, Bordered Heegaard Floer homology: Invariance and pairing arXiv: Geometric Topology. ,(2008) , 10.1090/MEMO/1216
Jacob Rasmussen, Lens space surgeries and L-space homology spheres arXiv: Geometric Topology. ,(2007)
Dylan P. Thurston, András Juhász, Ian Zemke, Naturality and mapping class groups in Heegaard Floer homology arXiv: Geometric Topology. ,(2012)
Liam Watson, Jonathan Hanselman, A calculus for bordered Floer homology arXiv: Geometric Topology. ,(2015)