G-dimension over local homomorphisms. Applications to the Frobenius endomorphism

作者: Srikanth Iyengar , Sean Sather-Wagstaff

DOI: 10.1215/IJM/1258136183

关键词:

摘要: We develop a theory of G-dimension for modules over local homomorphisms which encompasses the classical finite rings. As an application, we prove that ring R characteristic p is Gorenstein if and only it pos- sesses nonzero module projective dimension has when considered as R-module via some power Frobenius endomorphism R. also results track behavior properties under (de)composition.

参考文章(24)
Robin Hartshorne, Residues and duality ,(1966)
Claudia Miller, The Frobenius endomorphism and homological dimensions arXiv: Commutative Algebra. ,(2003)
H. Jürgen Herzog, Winfried Bruns, Cohen-Macaulay rings ,(1993)
Miles Reid, Hideyuki Matsumura, Commutative Ring Theory ,(1989)
Yuri I. Manin, Sergei I. Gelfand, Methods of Homological Algebra ,(1996)
Lars Winther Christensen, Semi-dualizing complexes and their Auslander categories Transactions of the American Mathematical Society. ,vol. 353, pp. 1839- 1883 ,(2001) , 10.1090/S0002-9947-01-02627-7
Jean Louis Verdier, Des catégories dérivées des catégories abéliennes Société mathématique de France , American Mathematical Society [distributor]. ,(1996)
S. Iyengar, H. B. Foxby, Depth and amplitude for unbounded complexes arXiv: Commutative Algebra. ,(2002)
Ryo Takahashi, Yuji Yoshino, Characterizing Cohen-Macaulay local rings by Frobenius maps Proceedings of the American Mathematical Society. ,vol. 132, pp. 3177- 3187 ,(2004) , 10.1090/S0002-9939-04-07525-2
Dmitri Apassov, Almost finite modules Communications in Algebra. ,vol. 27, pp. 919- 931 ,(1999) , 10.1080/00927879908826469