GGHLite: More Efficient Multilinear Maps from Ideal Lattices

作者: Adeline Langlois , Damien Stehlé , Ron Steinfeld , None

DOI: 10.1007/978-3-642-55220-5_14

关键词:

摘要: The GGH Graded Encoding Scheme[9], based on ideal lattices, is the first plausible approximation to a cryptographic multilinear map. Unfortunately, using security analysis in[9], scheme requires very large parameters provide for its underlying “encoding re-randomization” process. Our main contributions are formalize, simplify and improve efficiency of re-randomization process in construction. This results new construction that we call GGHLite. In particular, lower size standard deviation parameter of[9] from exponential polynomial parameter. improvement obtained via finer “drowning” step re-randomization, which apply Renyi divergence instead conventional statistical distance as measure between distributions. second reduce number randomizers needed Ω(n logn) 2, where n dimension lattices. These two allow us decrease bit public O(λ 5 logλ) O(λlog2 λ) GGHLite, with respect λ (for constant multilinearity κ).

参考文章(24)
Jean-Sébastien Coron, Tancrède Lepoint, Mehdi Tibouchi, Practical Multilinear Maps over the Integers international cryptology conference. ,vol. 2013, pp. 476- 493 ,(2013) , 10.1007/978-3-642-40041-4_26
Ron D. Rothblum, On the Circular Security of Bit-Encryption Theory of Cryptography. pp. 579- 598 ,(2013) , 10.1007/978-3-642-36594-2_32
Shweta Agrawal, Craig Gentry, Shai Halevi, Amit Sahai, Discrete Gaussian Leftover Hash Lemma over Infinite Domains international cryptology conference. pp. 97- 116 ,(2013) , 10.1007/978-3-642-42033-7_6
Jacob Alperin-Sheriff, Chris Peikert, Circular and KDM security for identity-based encryption public key cryptography. pp. 334- 352 ,(2012) , 10.1007/978-3-642-30057-8_20
Abhishek Banerjee, Chris Peikert, Alon Rosen, Pseudorandom Functions and Lattices Advances in Cryptology – EUROCRYPT 2012. pp. 719- 737 ,(2012) , 10.1007/978-3-642-29011-4_42
Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, Daniel Wichs, Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE Advances in Cryptology – EUROCRYPT 2012. pp. 483- 501 ,(2012) , 10.1007/978-3-642-29011-4_29
Markus Rückert, Dominique Schröder, Aggregate and Verifiably Encrypted Signatures from Multilinear Maps without Random Oracles information security and assurance. pp. 750- 759 ,(2009) , 10.1007/978-3-642-02617-1_76
Daniele Micciancio, S. Goldwasser, Complexity of lattice problems : a cryptographic perspective Springer. ,(2002)
Antoine Joux, A One Round Protocol for Tripartite Diffie-Hellman algorithmic number theory symposium. ,vol. 1838, pp. 385- 394 ,(2000) , 10.1007/10722028_23
Charalampos Papamanthou, Roberto Tamassia, Nikos Triandopoulos, Optimal authenticated data structures with multilinear forms international conference on pairing based cryptography. pp. 246- 264 ,(2010) , 10.1007/978-3-642-17455-1_16