Pulsed-laser-stimulated field ion emission from metal and semiconductor surfaces: A time-of-flight study of the formation of atomic, molecular, and cluster ions

作者: T. T. Tsong

DOI: 10.1103/PHYSREVB.30.4946

关键词:

摘要: In field ion emission, ions are formed beyond a critical distance from the emitter surface. This is imposed by condition that energy level of tunneling atomic electron must line up with vacant electronic state in solid. As result field-emitted exhibit deficit distribution. The related to binding and ionization emitted atoms, work function or affinity A time-of-flight measurement distribution various types both metal semiconductor surfaces has been made using pulsed-laser atom probe. From mechanisms formation pulsed-laser-stimulated including novel molecular cluster such as ${\mathrm{D}}_{3}^{+}$, ${\mathrm{N}}_{2}$${\mathrm{H}}^{+}$, ${\mathrm{ArH}}^{+}$, ${\mathrm{RhHe}}^{2+}$, ${\mathrm{PtHe}}^{2+}$, ${\mathrm{PtHe}}_{2}^{2+}$,${\mathrm{Si}}_{1\mathrm{t}\mathrm{o}\phantom{\rule{0ex}{0ex}}11}^{2+}$, ${\mathrm{Si}}_{1\phantom{\rule{0ex}{0ex}}\mathrm{t}\mathrm{o}\phantom{\rule{0ex}{0ex}}6}^{+}$, etc., investigated. It found photoexcitation plays an important role evaporation silicon. Pulsed-laser Si can be sustained almost indefinitely field-gradient- temperature-pulse-induced surface diffusion atoms shank. most abundant Si-cluster ${\mathrm{Si}}_{4}^{2+}$, ${\mathrm{Si}}_{5}^{2+}$, ${\mathrm{Si}}_{6}^{2+}$. These clusters ${\mathrm{Si}}_{13}^{4+}$ only small, symmetrically structured units one remove crystal. numbers 4, 5, 6, 13 magic formation. number 3 for 2+ ions. higher energies heavy data which not readily available, also derived field-evaporated

参考文章(24)
E.W. Müller, T.T. Tsong, Field ion microscopy, field ionization and field evaporation Progress in Surface Science. ,vol. 4, pp. 1- 139 ,(1974) , 10.1016/S0079-6816(74)80005-5
T. T. Tsong, Y. Liou, S. B. McLane, Methods for a precision measurement of ionic masses and appearance energies using the pulsed‐laser time‐of‐flight atom probe Review of Scientific Instruments. ,vol. 55, pp. 1246- 1254 ,(1984) , 10.1063/1.1137930
T.T Tsong, W.A Schmidt, O Frank, The critical energy deficit of field emitted ions Surface Science. ,vol. 65, pp. 109- 123 ,(1977) , 10.1016/0039-6028(77)90295-3
N. Ernst, G. Bozdech, J.H. Block, Critical energy deficits during the field ionization and proton capture of noble gases at rhodium and tungsten field emitters International Journal of Mass Spectrometry and Ion Physics. ,vol. 28, pp. 33- 48 ,(1978) , 10.1016/0020-7381(78)80068-0
T. T. Tsong, S. B. McLane, T. J. Kinkus, Pulsed‐laser time‐of‐flight atom‐probe field ion microscope Review of Scientific Instruments. ,vol. 53, pp. 1442- 1448 ,(1982) , 10.1063/1.1137193
A.H. Wapstra, K. Bos, The 1977 atomic mass evaluation: in four parts part I. Atomic mass table Atomic Data and Nuclear Data Tables. ,vol. 19, pp. 177- 214 ,(1977) , 10.1016/0092-640X(77)90020-1
Mark G. Inghram, Robert Gomer, Mass Spectrometric Analysis of Ions from the Field Microscope The Journal of Chemical Physics. ,vol. 22, pp. 1279- 1280 ,(1954) , 10.1063/1.1740380
Tien Tzou Tsong, Erwin W. Müller, Measurement of the Energy Distribution in Field Ionization Journal of Chemical Physics. ,vol. 41, pp. 3279- 3284 ,(1964) , 10.1063/1.1725725
Andrew J. Jason, Field-Induced Resonance States at a Surface Physical Review. ,vol. 156, pp. 266- 285 ,(1967) , 10.1103/PHYSREV.156.266