Semiparametric estimation of count regression models

作者: Shiferaw Gurmu , Paul Rilstone , Steven Stern

DOI: 10.1016/S0304-4076(98)00026-8

关键词:

摘要: This paper develops a semiparametric estimation approach for mixed count regression models based on series expansion the unknown density of unobserved heterogeneity. We use generalized Laguerre around gamma baseline to model heterogeneity in Poisson mixture model. establish consistency estimator and present computational strategy implement proposed techniques standard as well truncated, censored, zero-inflated models. Monte Carlo evidence shows that finite sample behavior is quite good. The applies method individual shopping behavior.

参考文章(29)
Kurt Brannas, Limited dependent Poisson regression The Statistician. ,vol. 41, pp. 413- 423 ,(1992) , 10.2307/2349006
A. Colin Cameron, Per Johansson, Bivariate Count Data Regression Using Series Expansions: With Applications Research Papers in Economics. ,(1998)
James R. Munkres, Topology; a first course ,(1974)
T.W. Epps, Stock prices as branching processes Communications in Statistics. Stochastic Models. ,vol. 12, pp. 529- 558 ,(1996) , 10.1080/15326349608807400
C. Gourieroux, M. Visser, A count data model with unobserved heterogeneity Journal of Econometrics. ,vol. 79, pp. 247- 268 ,(1997) , 10.1016/S0304-4076(97)00022-5
Shiferaw Gurmu, Pravin K. Trivedi, Overdispersion tests for truncated Poisson regression models Journal of Econometrics. ,vol. 54, pp. 347- 370 ,(1992) , 10.1016/0304-4076(92)90113-6
Rainer Winkelmann, Duration Dependence and Dispersion in Count-Data Models Journal of Business & Economic Statistics. ,vol. 13, pp. 467- 474 ,(1995) , 10.2307/1392392