An Accurate Block Solver for Stiff Initial Value Problems

作者: H Musa , MB Suleiman , F Ismail , N Senu , ZB Ibrahim

DOI: 10.1155/2013/567451

关键词:

摘要: New implicit block formulae that compute solution of stiff initial value problems at two points simultaneously are derived and implemented in a variable step size mode. The strategy for changing the optimum performance involves halving, increasing by multiple 1.7, or maintaining current size. stability analysis methods indicates their suitability solving problems. Numerical results given compared with some existing backward differentiation formula algorithms. indicate an improvement terms accuracy.

参考文章(22)
Zarina Bibi Ibrahim, Mohamed Suleiman, Khairil Iskandar Othman, Fixed coefficients block backward differentiation formulas for the numerical solution of stiff ordinary differential equations European journal of scientific research. ,vol. 21, pp. 508- 520 ,(2008)
Bertil Gustafsson, Wendy Kress, Deferred correction methods for initial value problems Bit Numerical Mathematics. ,vol. 41, pp. 986- 995 ,(2001) , 10.1023/A:1021937227950
Luigi Brugnano, Francesca Mazzia, Donato Trigiante, Fifty Years of Stiffness arXiv: Numerical Analysis. pp. 1- 21 ,(2011) , 10.1007/978-90-481-9981-5_1
Germund G. Dahlquist, A special stability problem for linear multistep methods Bit Numerical Mathematics. ,vol. 3, pp. 27- 43 ,(1963) , 10.1007/BF01963532
S. A. M. Yatim, Z. B. Ibrahim, K. I. Othman, M. B. Suleiman, A numerical algorithm for solving stiff ordinary differential equations Mathematical Problems in Engineering. ,vol. 2013, pp. 989381- ,(2013) , 10.1155/2013/989381