Deep learning in breast radiology: current progress and future directions

作者: Basak E. Dogan , Dogan Polat , William C. Ou

DOI: 10.1007/S00330-020-07640-9

关键词:

摘要: This review provides an overview of current applications deep learning methods within breast radiology. The diagnostic capabilities in radiology continue to improve, giving rise the prospect that these may be integrated not only into detection and classification lesions, but also areas such as risk estimation prediction tumor responses therapy. Remaining challenges include limited availability high-quality data with expert annotations ground truth determinations, need for further validation initial results, unresolved medicolegal considerations. KEY POINTS: • Deep (DL) continues push boundaries what can accomplished by artificial intelligence (AI) imaging distinct advantages over conventional computer-aided detection. DL-based AI has potential augment radiologists improving accuracy, increasing efficiency, supporting clinical decision-making through prognosis therapeutic response. DL implementation a paucity prospective on utilization yet questions regarding utilization.

参考文章(94)
Alexander Ciritsis, Cristina Rossi, Matthias Eberhard, Magda Marcon, Anton S. Becker, Andreas Boss, Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. European Radiology. ,vol. 29, pp. 5458- 5468 ,(2019) , 10.1007/S00330-019-06118-7
Ray Cody Mayo, Daniel Kent, Lauren Chang Sen, Megha Kapoor, Jessica W. T. Leung, Alyssa T. Watanabe, Reduction of False-Positive Markings on Mammograms: a Retrospective Comparison Study Using an Artificial Intelligence-Based CAD Journal of Digital Imaging. ,vol. 32, pp. 618- 624 ,(2019) , 10.1007/S10278-018-0168-6
Tomoyuki Fujioka, Kazunori Kubota, Mio Mori, Yuka Kikuchi, Leona Katsuta, Mai Kasahara, Goshi Oda, Toshiyuki Ishiba, Tsuyoshi Nakagawa, Ukihide Tateishi, Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network Japanese Journal of Radiology. ,vol. 37, pp. 466- 472 ,(2019) , 10.1007/S11604-019-00831-5
Adam Yala, Constance Lehman, Tal Schuster, Tally Portnoi, Regina Barzilay, A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction Radiology. ,vol. 292, pp. 60- 66 ,(2019) , 10.1148/RADIOL.2019182716
Zhantao Cao, Lixin Duan, Guowu Yang, Ting Yue, Qin Chen, An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures BMC Medical Imaging. ,vol. 19, pp. 1- 9 ,(2019) , 10.1186/S12880-019-0349-X
Adam Yala, Tal Schuster, Randy Miles, Regina Barzilay, Constance Lehman, A Deep Learning Model to Triage Screening Mammograms: A Simulation Study. Radiology. ,vol. 293, pp. 38- 46 ,(2019) , 10.1148/RADIOL.2019182908
Ritse M. Mann, Nariya Cho, Linda Moy, Breast MRI: State of the Art Radiology. ,vol. 292, pp. 520- 536 ,(2019) , 10.1148/RADIOL.2019182947
Emily F Conant, Alicia Y Toledano, Senthil Periaswamy, Sergei V Fotin, Jonathan Go, Justin E Boatsman, Jeffrey W Hoffmeister, None, Improving Accuracy and Efficiency with Concurrent Use of Artificial Intelligence for Digital Breast Tomosynthesis. Radiology. Artificial intelligence. ,vol. 1, ,(2019) , 10.1148/RYAI.2019180096
David Coronado-Gutiérrez, Gorane Santamaría, Sergi Ganau, Xavier Bargalló, Stefania Orlando, M. Eulalia Oliva-Brañas, Alvaro Perez-Moreno, Xavier P. Burgos-Artizzu, Quantitative Ultrasound Image Analysis of Axillary Lymph Nodes to Diagnose Metastatic Involvement in Breast Cancer. Ultrasound in Medicine and Biology. ,vol. 45, pp. 2932- 2941 ,(2019) , 10.1016/J.ULTRASMEDBIO.2019.07.413
Simukayi Mutasa, Peter Chang, Eduardo P. Van Sant, John Nemer, Michael Liu, Jenika Karcich, Gita Patel, Sachin Jambawalikar, Richard Ha, Potential Role of Convolutional Neural Network Based Algorithm in Patient Selection for DCIS Observation Trials Using a Mammogram Dataset. Academic Radiology. ,vol. 27, pp. 774- 779 ,(2020) , 10.1016/J.ACRA.2019.08.012