Use of the equivalent volumetric enthalpy variation in non-linear phase-change processes: freezing-zone progression and thawing-time determination

作者: M. Ramos , P.D. Sanz , J. Aguirre-Puente , R. Posado

DOI: 10.1016/0140-7007(94)90072-8

关键词:

摘要: Abstract Unlike pure substances that melt and solidify at a fixed temperature, some materials, such as the Karlsruhe Test Substance (methyl cellulose gel) freeze thaw out over range of temperatures. In this paper, phase change process is studied using an equivalent volumetric enthalpy variation corresponding to thermal field in freezing or thawing zone instead latent heat appearing Stefan solution for substance. order determine variation, two different temperature distributions are assumed substance undergoing change. Results obtained from calculations applying approach compared with experimental measurements. Measurements freezing-zone progression were made course three experiments where first kind boundary conditions imposed on samples. addition, 35 values time have been taken literature presenting third conditions. Comparisons showed best agreement when quadratic distribution was adopted. The proposed method seems be useful many practical applications, particularly because it allows without necessitating use empirical parameters Plank's original equation

参考文章(19)
A.C Cleland, Simulation of industrial refrigeration plants under variable load conditions International Journal of Refrigeration-revue Internationale Du Froid. ,vol. 6, pp. 11- 19 ,(1983) , 10.1016/0140-7007(83)90028-2
E Spörl, W Matthäus, K.-D Koza, H Hänsgen, R Knöner, Calculation of non-stationary temperature fields in tissue in the application of cryotherapy a contribution to therapy planning International Journal of Refrigeration-revue Internationale Du Froid. ,vol. 14, pp. 368- 371 ,(1991) , 10.1016/0140-7007(91)90035-F
G. Guiffant, P. Flaud, L. Royon, A phenomenological description of the progression of a freezing front in a slab. Application to a new heat storage material International Communications in Heat and Mass Transfer. ,vol. 18, pp. 11- 17 ,(1991) , 10.1016/0735-1933(91)90003-M
A. C. CLELAND, R. L. EARLE, Assessment of Freezing Time Prediction Methods Journal of Food Science. ,vol. 49, pp. 1034- 1042 ,(1984) , 10.1111/J.1365-2621.1984.TB10387.X
A.C Cleland, R.L Earle, A simple method for prediction of heating and cooling cooling in solids of various shapes International Journal of Refrigeration-revue Internationale Du Froid. ,vol. 5, pp. 98- 106 ,(1982) , 10.1016/0140-7007(82)90084-6
R. H. MASCHERONI, A. CALVELO, A Simplified Model for Freezing Time Calculations in Foods Journal of Food Science. ,vol. 47, pp. 1201- 1207 ,(1982) , 10.1111/J.1365-2621.1982.TB07648.X
C. Bonacina, G. Cominl, A. Fasano, M. Primicerio, On the estimation of thermophysical properties in nonlinear heat-conduction problems International Journal of Heat and Mass Transfer. ,vol. 17, pp. 861- 867 ,(1974) , 10.1016/0017-9310(74)90153-7
SIEW LIAN CHUNG, JOHN H. MERRITT, Freezing Time Modeling for Small Finite Cylindrical Shaped Foodstuff Journal of Food Science. ,vol. 56, pp. 1072- 1075 ,(1991) , 10.1111/J.1365-2621.1991.TB14644.X
R. H. Tien, G. E. Geiger, A Heat-Transfer Analysis of the Solidification of a Binary Eutectic System Journal of Heat Transfer. ,vol. 89, pp. 230- 233 ,(1967) , 10.1115/1.3614365