Adaptive feature selection via a new version of support vector machine

作者: Junyan Tan , Zhiqiang Zhang , Ling Zhen , Chunhua Zhang , Naiyang Deng

DOI: 10.1007/S00521-012-1018-Y

关键词:

摘要: This paper focuses on feature selection in classification. A new version of support vector machine (SVM) named p-norm ( $$p\in[0,1]$$ ) is proposed. Different from the standard SVM, $$(p\in[0,1])$$ normal decision plane used which leads to more sparse solution. Our model can not only select less features but also improve classification accuracy by adjusting parameter p. The numerical experiments results show that our SVM effective than some usual methods selection.

参考文章(17)
O. L. Mangasarian, Paul S. Bradley, Feature Selection via Concave Minimization and Support Vector Machines international conference on machine learning. pp. 82- 90 ,(1998)
Wen Jing Chen, Ying Jie Tian, Lp-norm proximal support vector machine and its applications international conference on conceptual structures. ,vol. 1, pp. 2417- 2423 ,(2010) , 10.1016/J.PROCS.2010.04.272
Xiaojun Chen, Fengmin Xu, Yinyu Ye, Lower Bound Theory of Nonzero Entries in Solutions of $\ell_2$-$\ell_p$ Minimization SIAM Journal on Scientific Computing. ,vol. 32, pp. 2832- 2852 ,(2010) , 10.1137/090761471
Alfred M. Bruckstein, David L. Donoho, Michael Elad, From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images Siam Review. ,vol. 51, pp. 34- 81 ,(2009) , 10.1137/060657704
P. S. Bradley, O. L. Mangasarian, W. N. Street, Feature Selection Via Mathematical Programming Informs Journal on Computing. ,vol. 10, pp. 209- 217 ,(1998) , 10.1287/IJOC.10.2.209
Yingjie Tian, Jun Yu, Wenjing Chen, l p -norm support vector machine with CCCP fuzzy systems and knowledge discovery. ,vol. 4, pp. 1560- 1564 ,(2010) , 10.1109/FSKD.2010.5569345
Jianqing Fan, Runze Li, Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties Journal of the American Statistical Association. ,vol. 96, pp. 1348- 1360 ,(2001) , 10.1198/016214501753382273
C. L. Blake, UCI Repository of machine learning databases www.ics.uci.edu/〜mlearn/MLRepository.html. ,(1998)
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, E. S. Lander, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. ,vol. 286, pp. 531- 537 ,(1999) , 10.1126/SCIENCE.286.5439.531
Olvi L. Mangasarian, Gang Kou, Data Clustering with a Relational Push-Pull Model international conference on data mining. pp. 189- 194 ,(2007) , 10.1109/ICDMW.2007.30