Dynamics of Discrete-Time Quaternionic Hopfield Neural Networks

作者: Teijiro Isokawa , Haruhiko Nishimura , Naotake Kamiura , Nobuyuki Matsui

DOI: 10.1007/978-3-540-74690-4_86

关键词:

摘要: … H, the division ring of quaternions, thus constitutes the four-dimensional vector space over the real … where p · q and p × q denote the dot and cross products respectively between three …

参考文章(8)
Ferdinand Peper, Teijiro Isokawa, Haruhiko Nishimura, Nobuyuki Matsui, Hiromi Kusamichi, Quaternion neural network with geometrical operators Journal of Intelligent and Fuzzy Systems. ,vol. 15, pp. 149- 164 ,(2004)
MITSUO YOSHIDA, YASUAKI KUROE, TAKEHIRO MORI, Models of Hopfield-type quaternion neural networks and their energy functions. International Journal of Neural Systems. ,vol. 15, pp. 129- 135 ,(2005) , 10.1142/S012906570500013X
P. Arena, L. Fortuna, G. Muscato, M.G. Xibilia, Multilayer perceptrons to approximate quaternion valued functions Neural Networks. ,vol. 10, pp. 335- 342 ,(1997) , 10.1016/S0893-6080(96)00048-2
Thomas L. Hankins, I. Bernard Cohen, Sir William Rowan Hamilton ,(1980)
G.M. Georgiou, C. Koutsougeras, Complex domain backpropagation IEEE Transactions on Circuits and Systems Ii: Analog and Digital Signal Processing. ,vol. 39, pp. 330- 334 ,(1992) , 10.1109/82.142037
T. Isokawa, H. Nishimura, N. Kamiura, N. Matsui, Fundamental Properties of Quaternionic Hopfield Neural Network international joint conference on neural network. pp. 218- 223 ,(2006) , 10.1109/IJCNN.2006.246683
T. Nitta, An Extension of the Back-propagation Algorithm to Quaternions international conference on neural information processing. ,vol. 1, pp. 247- 250 ,(1996)