Which simple types have a unique inhabitant

作者: Gabriel Scherer , Didier Rémy

DOI: 10.1145/2784731.2784757

关键词:

摘要: We study the question of whether a given type has unique inhabitant modulo program equivalence. In setting simply-typed lambda-calculus with sums, equipped strong --equivalence, we show that uniqueness is decidable. present saturating focused logic introduces irreducible cuts on positive types ``as soon as possible''. Backward search in this gives an effective algorithm returns either zero, one or two distinct inhabitants for any type. Preliminary application studies such feature can be useful strongly-typed programs, inferring code highly-polymorphic library functions, ``glue code'' inside more complex terms.

参考文章(47)
Anatoli Degtyarev, Andrei Voronkov, None, The Inverse Method In: Handbook of Automated Reasoning. Elsevier and MIT Press; 2001. p. 179-272.. pp. 179- 272 ,(2001) , 10.1016/B978-044450813-3/50006-0
Pierre Bourreau, Sylvain Salvati, Game semantics and uniqueness of type inhabitance in the simply-typed λ-calculus international conference on typed lambda calculi and applications. ,vol. 6878, pp. 61- 75 ,(2011) , 10.1007/978-3-642-21691-6_8
Kaustuv Chaudhuri, Dale Miller, Alexis Saurin, Canonical Sequent Proofs via Multi-Focusing IFIP TCS. pp. 383- 396 ,(2008) , 10.1007/978-0-387-09680-3_26
Hugo Herbelin, A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure computer science logic. ,vol. 933, pp. 61- 75 ,(1994) , 10.1007/BFB0022247
Stefan Hetzl, Kaustuv Chaudhuri, Dale Miller, A Systematic Approach to Canonicity in the Classical Sequent Calculus computer science logic. ,vol. 16, pp. 183- 197 ,(2012) , 10.4230/LIPICS.CSL.2012.183
María -Virginia Aponte, Roberto Cosmo, Type Isomorphisms for Module Signatures international symposium on programming language implementation and logic programming. pp. 334- 346 ,(1996) , 10.1007/3-540-61756-6_95
Neil Ghani, ßn-Equality for Coproducts international conference on typed lambda calculi and applications. pp. 171- 185 ,(1995) , 10.1007/BFB0014052
J. B. Wells, Boris Yakobowski, Graph-based proof counting and enumeration with applications for program fragment synthesis logic based program synthesis and transformation. pp. 262- 277 ,(2004) , 10.1007/11506676_17