Hierarchical linear and nonlinear adaptive learning model for system identification and prediction

作者: Mohammad Abu Jami’in , Khairul Anam , Riries Rulaningtyas , Urip Mudjiono , Adianto Adianto

DOI: 10.1007/S10489-019-01615-0

关键词:

摘要: In this paper, we propose a method to increase the model accuracy with linear and nonlinear sub-models. The sub-model applies least square error (LSE) algorithm uses neural networks (NN). two sub-models are updated hierarchically using Lyapunov function. proposed has advantages: 1) is multi-parametric model. Using model, weights of NN can be summarized into coefficients or parameters auto-regressive eXogenous/auto-regressive moving average (ARX/ARMA) structure, making it easier establish control laws, 2) learning rate ensure convergence errors at each training epoch. One improve whole system. We have demonstrated by experimental studies that technique gives better results when compared existing studies.

参考文章(29)
Guilherme A. Barreto, Luís Gustavo M. Souza, Novel approaches for parameter estimation of local linear models for dynamical system identification Applied Intelligence. ,vol. 44, pp. 149- 165 ,(2016) , 10.1007/S10489-015-0699-1
Mohammad Abu Jami‘in, Jinglu Hu, Mohd Hamiruce Marhaban, Imam Sutrisno, Norman Bin Mariun, Quasi‐ARX neural network based adaptive predictive control for nonlinear systems Ieej Transactions on Electrical and Electronic Engineering. ,vol. 11, pp. 83- 90 ,(2016) , 10.1002/TEE.22191
Mohammad Abu Jami'in, Imam Sutrisno, Jinglu Hu, Maximum power tracking control for a wind energy conversion system based on a quasi-ARX neural network model IEEJ Transactions on Electrical and Electronic Engineering. ,vol. 10, pp. 368- 375 ,(2015) , 10.1002/TEE.22095
Maher Algreer, Matthew Armstrong, Damian Giaouris, Active Online System Identification of Switch Mode DC–DC Power Converter Based on Efficient Recursive DCD-IIR Adaptive Filter IEEE Transactions on Power Electronics. ,vol. 27, pp. 4425- 4435 ,(2012) , 10.1109/TPEL.2012.2190754
X. Liu, J. Wang, W.X. Zheng, Convergence analysis of refined instrumental variable method for continuous-time system identification Iet Control Theory and Applications. ,vol. 5, pp. 868- 877 ,(2011) , 10.1049/IET-CTA.2010.0211
Mohammad Abu Jami'in, Imam Sutrisno, Jinglu Hu, Lyapunov learning algorithm for Quasi-ARX neural network to identification of nonlinear dynamical system systems, man and cybernetics. pp. 3147- 3152 ,(2012) , 10.1109/ICSMC.2012.6378275
M. Soliman, O.P. Malik, D.T. Westwick, Multiple model multiple-input multiple-output predictive control for variable speed variable pitch wind energy conversion systems Iet Renewable Power Generation. ,vol. 5, pp. 124- 136 ,(2011) , 10.1049/IET-RPG.2009.0137
S. Chatterjee, S. Nigam, J. B. Singh, L. N. Upadhyaya, Software fault prediction using Nonlinear Autoregressive with eXogenous Inputs (NARX) network Applied Intelligence. ,vol. 37, pp. 121- 129 ,(2012) , 10.1007/S10489-011-0316-X
Yu CHENG, Lan WANG, Jinglu HU, Identification of quasi-ARX neurofuzzy model with an SVR and GA approach IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. ,vol. 95, pp. 876- 883 ,(2012) , 10.1587/TRANSFUN.E95.A.876
Hui Peng, Jun Wu, Garba Inoussa, Qiulian Deng, Kazushi Nakano, Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model Control Engineering Practice. ,vol. 17, pp. 59- 66 ,(2009) , 10.1016/J.CONENGPRAC.2008.05.005