A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups

作者: MARC KESSEBHMER , BERND O. STRATMANN

DOI: 10.1017/S0143385703000282

关键词:

摘要: We elaborate thermodynamic and multifractal formalisms for general classes of potential functions their average growth rates. then apply these to certain geometrically finite Kleinian groups which may have parabolic elements different ranks. show that our revised give access a description the spectrum ‘homological rates’ in terms Hausdorff dimension. Furthermore, we derive necessary sufficient conditions existence ‘thermodynamic phase transitions’.

参考文章(29)
Bernd Stratmann, A note on counting cuspidal excursions. Annales Academiae Scientiarum Fennicae. Series A I. Mathematica. ,vol. 20, pp. 359- 372 ,(1995)
Karl Sigmund, Manfred Denker, Christian Grillenberger, Ergodic Theory on Compact Spaces ,(1976)
Jesse William Byrne, Multifractal Analysis of Parabolic Rational Maps University of North Texas. ,(1998)
Pawel Hanus, R. Daniel Mauldin, Mariusz Urbański, Thermodynamic Formalism and Multifractal Analysis of Conformal Infinite Iterated Function Systems Acta Mathematica Hungarica. ,vol. 96, pp. 27- 98 ,(2002) , 10.1023/A:1015613628175
B. Stratmann, S. L. Velani, The Patterson Measure for Geometrically Finite Groups with Parabolic Elements, New and Old Proceedings of the London Mathematical Society. ,vol. s3-71, pp. 197- 220 ,(1995) , 10.1112/PLMS/S3-71.1.197
Franz Hofbauer, Examples for the nonuniqueness of the equilibrium state Transactions of the American Mathematical Society. ,vol. 228, pp. 223- 241 ,(1977) , 10.1090/S0002-9947-1977-0435352-1