Sepsis Deterioration Prediction Using Channelled Long Short-Term Memory Networks

作者: Peter Svenson , Giannis Haralabopoulos , Mercedes Torres Torres

DOI: 10.1007/978-3-030-59137-3_32

关键词:

摘要: Sepsis is a severe medical condition that results in millions of deaths globally each year. In this paper, we propose Channelled Long-Short Term Memory Network model tasked with predicting 48-hour mortality sepsis against the Sequential Organ Failure Assessment (SOFA) score. We use MIMIC-III critical care database. Our research demonstrates viability deep learning patient outcomes sepsis. When compared published literature for similar tasks, our channelled LSTM models demonstrated comparable AUROC superior precision The showed outperformed SOFA score (0.846–0.896 vs 0.696) and average (0.299–0.485 0.110). Finally, Fully-Channelled outperforms baseline by \(5.4\%\) \(59.9\%\)

参考文章(38)
Bojan Cestnik, Estimating probabilities: a crucial task in machine learning european conference on artificial intelligence. pp. 147- 149 ,(1990)
Francesca Rubulotta, John C. Marshall, Graham Ramsay, David Nelson, Mitchell Levy, Mark Williams, Predisposition, insult/infection, response, and organ dysfunction: A new model for staging severe sepsis Critical Care Medicine. ,vol. 37, pp. 1329- 1335 ,(2009) , 10.1097/CCM.0B013E31819D5DB1
Roger C. Bone, Modulators of Coagulation Archives of Internal Medicine. ,vol. 152, pp. 1381- 1389 ,(1992) , 10.1001/ARCHINTE.1992.00400190023007
Jean-Louis Vincent, Arnaldo de Mendonca, Francis Cantraine, Rui Moreno, Jukka Takala, Peter M. Suter, Charles L. Sprung, Francis Colardyn, Serge Blecher, Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study Critical Care Medicine. ,vol. 26, pp. 1793- 1800 ,(1998) , 10.1097/00003246-199811000-00016
Mark E. Mikkelsen, Andrea N. Miltiades, David F. Gaieski, Munish Goyal, Barry D. Fuchs, Chirag V. Shah, Scarlett L. Bellamy, Jason D. Christie, Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Critical Care Medicine. ,vol. 37, pp. 1670- 1677 ,(2009) , 10.1097/CCM.0B013E31819FCF68
Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory Neural Computation. ,vol. 9, pp. 1735- 1780 ,(1997) , 10.1162/NECO.1997.9.8.1735
Stephen P. J. Macdonald, Glenn Arendts, Daniel M. Fatovich, Simon G. A. Brown, Comparison of PIRO, SOFA, and MEDS Scores for Predicting Mortality in Emergency Department Patients With Severe Sepsis and Septic Shock Academic Emergency Medicine. ,vol. 21, pp. 1257- 1263 ,(2014) , 10.1111/ACEM.12515
Mayer Sagy, Yasir Al-Qaqaa, Paul Kim, Definitions and Pathophysiology of Sepsis Current Problems in Pediatric and Adolescent Health Care. ,vol. 43, pp. 260- 263 ,(2013) , 10.1016/J.CPPEDS.2013.10.001
Jens Rocktaeschel, Hiroshi Morimatsu, Shigehiko Uchino, Donna Goldsmith, Stephanie Poustie, David Story, Geoffrey Gutteridge, Rinaldo Bellomo, Acid-base status of critically ill patients with acute renal failure: analysis based on Stewart-Figge methodology. Critical Care. ,vol. 7, pp. 1- 7 ,(2003) , 10.1186/CC2333
Mervyn Singer, Clifford S Deutschman, Christopher Warren Seymour, Manu Shankar-Hari, Djillali Annane, Michael Bauer, Rinaldo Bellomo, Gordon R Bernard, Jean-Daniel Chiche, Craig M Coopersmith, Richard S Hotchkiss, Mitchell M Levy, John C Marshall, Greg S Martin, Steven M Opal, Gordon D Rubenfeld, Tom van der Poll, Jean-Louis Vincent, Derek C Angus, None, The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. ,vol. 315, pp. 801- 810 ,(2016) , 10.1001/JAMA.2016.0287