Heating in Nanophotonic Traps for Cold Atoms

作者: Arno Rauschenbeutel , Arno Rauschenbeutel , Oriol Romero-Isart , Oriol Romero-Isart , Philipp Schneeweiss

DOI: 10.1103/PHYSREVX.9.041034

关键词:

摘要: Laser-cooled atoms that are trapped and optically interfaced with light in nanophotonic waveguides a powerful platform for fundamental research quantum optics as well applications communication information processing. Ever since the first realization of such hybrid nanophotonic, heating rates atomic motion observed various experimental settings have typically been exceeding those comparable free-space optical microtraps by about three orders magnitude. This excessive is roadblock implementation certain protocols devices. Its origin has so far remained elusive and, at typical atom-surface separations less than an wavelength encountered traps, numerous effects may potentially contribute to atom heating. Here, we theoretically describe effect mechanical vibrations on guided fields provide general theory particle-phonon interaction traps. We test our applying it case laser-cooled cesium nanofiber-based two-color find excellent quantitative agreement between predicted experimentally measured values. Our predicts that, this setting, dominant process stems from optomechanical coupling continuum thermally occupied flexural modes waveguide structure. Beyond unraveling long-standing riddle also study dependence relevant system parameters. findings allow us propose several strategies minimizing Finally, highly optomechanics experiments dielectric nanoparticles close waveguides.

参考文章(87)
A Goban, C-L Hung, JD Hood, S-P Yu, JA Muniz, O Painter, HJ Kimble, None, Superradiance for Atoms Trapped along a Photonic Crystal Waveguide. Physical Review Letters. ,vol. 115, pp. 063601- 063601 ,(2015) , 10.1103/PHYSREVLETT.115.063601
Rudolf Grimm, Matthias Weidemüller, Yurii B. Ovchinnikov, Optical dipole traps for neutral atoms Advances in Atomic Molecular and Optical Physics. ,vol. 42, pp. 95- 170 ,(2000) , 10.1016/S1049-250X(08)60186-X
J. M. Ward, A. Maimaiti, Vu H. Le, S. Nic Chormaic, Contributed Review: Optical micro- and nanofiber pulling rig Review of Scientific Instruments. ,vol. 85, pp. 111501- 111501 ,(2014) , 10.1063/1.4901098
Shinya Kato, Takao Aoki, Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity Physical Review Letters. ,vol. 115, pp. 093603- 093603 ,(2015) , 10.1103/PHYSREVLETT.115.093603
B. Gouraud, D. Maxein, A. Nicolas, O. Morin, J. Laurat, Demonstration of a memory for tightly guided light in an optical nanofiber. Physical Review Letters. ,vol. 114, pp. 180503- ,(2015) , 10.1103/PHYSREVLETT.114.180503
K. Vedam, The Elastic and Photoelastic Constants of Fused Quartz Physical Review. ,vol. 78, pp. 472- 473 ,(1950) , 10.1103/PHYSREV.78.472.2
A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, Demonstration of a state-insensitive, compensated nanofiber trap Physical Review Letters. ,vol. 109, pp. 033603- ,(2012) , 10.1103/PHYSREVLETT.109.033603
D. Rychtarik, B. Engeser, H.-C. Nägerl, R. Grimm, Two-Dimensional Bose-Einstein Condensate in an Optical Surface Trap Physical Review Letters. ,vol. 92, pp. 173003- 173003 ,(2004) , 10.1103/PHYSREVLETT.92.173003
C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms Optica. ,vol. 2, pp. 353- 356 ,(2015) , 10.1364/OPTICA.2.000353
N. Kiesel, F. Blaser, U. Delic, D. Grass, R. Kaltenbaek, M. Aspelmeyer, Cavity cooling of an optically levitated submicron particle Proceedings of the National Academy of Sciences of the United States of America. ,vol. 110, pp. 14180- 14185 ,(2013) , 10.1073/PNAS.1309167110