Physical replicas and the Bose glass in cold atomic gases

作者: S Morrison , A Kantian , A J Daley , H G Katzgraber , M Lewenstein

DOI: 10.1088/1367-2630/10/7/073032

关键词:

摘要: We study cold atomic gases in a disorder potential and analyse the correlations between different systems subjected to same landscape. Such independent copies with landscape are known as replicas. While, general, these not accessible experimentally condensed matter systems, they can be realized using standard tools for controlling an optical lattice. Of special interest is overlap function which represents natural order parameter disordered correlation atoms of two replicas disorder. demonstrate efficient measurement scheme determination this disorder-induced function. As application, we focus on Bose–Hubbard model determine within perturbation theory numerical analysis. find that allows identification Bose-glass phase certain regimes.

参考文章(68)
K. V. Krutitsky, M. Thorwart, R. Egger, R. Graham, Ultracold bosons in lattices with binary disorder Physical Review A. ,vol. 77, pp. 053609- ,(2008) , 10.1103/PHYSREVA.77.053609
K. Binder, A. P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions Reviews of Modern Physics. ,vol. 58, pp. 801- 976 ,(1986) , 10.1103/REVMODPHYS.58.801
Guifré Vidal, Efficient simulation of one-dimensional quantum many-body systems. Physical Review Letters. ,vol. 93, pp. 040502- ,(2004) , 10.1103/PHYSREVLETT.93.040502
Pinaki Sengupta, Stephan Haas, Quantum Glass Phases in the Disordered Bose-Hubbard Model Physical Review Letters. ,vol. 99, pp. 050403- ,(2007) , 10.1103/PHYSREVLETT.99.050403
Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Hänsch, Immanuel Bloch, Quantum Phase Transition From a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms Nature. ,vol. 415, pp. 39- 44 ,(2002) , 10.1038/415039A
A. Sanpera, A. Kantian, L. Sanchez-Palencia, J. Zakrzewski, M. Lewenstein, Atomic fermi-bose mixtures in inhomogeneous and random lattices: from fermi glass to quantum spin glass and quantum percolation. Physical Review Letters. ,vol. 93, pp. 040401- ,(2004) , 10.1103/PHYSREVLETT.93.040401
Kenneth Günter, Thilo Stöferle, Henning Moritz, Michael Köhl, Tilman Esslinger, Bose-fermi mixtures in a three-dimensional optical lattice. Physical Review Letters. ,vol. 96, pp. 180402- ,(2006) , 10.1103/PHYSREVLETT.96.180402
B. Damski, J. Zakrzewski, L. Santos, P. Zoller, M. Lewenstein, Atomic Bose and Anderson glasses in optical lattices. Physical Review Letters. ,vol. 91, pp. 080403- ,(2003) , 10.1103/PHYSREVLETT.91.080403
J. Sebby-Strabley, M. Anderlini, P. S. Jessen, J. V. Porto, Lattice of double wells for manipulating pairs of cold atoms Physical Review A. ,vol. 73, pp. 033605- ,(2006) , 10.1103/PHYSREVA.73.033605
P. Lugan, D. Clément, P. Bouyer, A. Aspect, M. Lewenstein, L. Sanchez-Palencia, Ultracold Bose Gases in 1D Disorder: From Lifshits Glass to Bose-Einstein Condensate Physical Review Letters. ,vol. 98, pp. 170403- ,(2007) , 10.1103/PHYSREVLETT.98.170403