Optimization, conditioning and accuracy of radial basis function method for partial differential equations with nonlocal boundary conditions—A case of two-dimensional Poisson equation

作者: Svaju⌢nas Sajavičius

DOI: 10.1016/J.ENGANABOUND.2013.01.009

关键词:

摘要: … be described by mathematical models consisted of partial differential equations (PDEs) with … for the solution of two-dimensional Poisson equation with nonlocal boundary conditions. …

参考文章(79)
Shmuel Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation Advances in Computational Mathematics. ,vol. 11, pp. 193- 210 ,(1999) , 10.1023/A:1018975909870
Gregory E. Fasshauer, Solving differential equations with radial basis functions: multilevel methods and smoothing Advances in Computational Mathematics. ,vol. 11, pp. 139- 159 ,(1999) , 10.1023/A:1018919824891
Josef Hoschek, Dieter Lasser, Scattered Data Interpolation Vieweg+Teubner Verlag. pp. 368- 411 ,(1992) , 10.1007/978-3-322-89829-6_9
Holger Wendland, Scattered Data Approximation ,(2004)
Hans Petter Langtangen, Python scripting for computational science ,(2004)
C.-S. Huang, C.-F. Lee, A.H.-D. Cheng, Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method Engineering Analysis With Boundary Elements. ,vol. 31, pp. 614- 623 ,(2007) , 10.1016/J.ENGANABOUND.2006.11.011
B. Šarler, R. Vertnik, Meshfree explicit local radial basis function collocation method for diffusion problems Computers & Mathematics With Applications. ,vol. 51, pp. 1269- 1282 ,(2006) , 10.1016/J.CAMWA.2006.04.013