Localized excitations in (2+1)-dimensional systems.

作者: Xiao-yan Tang , Sen-yue Lou , Ying Zhang

DOI: 10.1103/PHYSREVE.66.046601

关键词:

摘要: By means of a special variable separation approach, a common formula with some arbitrary functions has been obtained for some suitable physical quantities of various (2+ 1)-dimensional models such as the Davey-Stewartson (DS) model, the Nizhnik-Novikov-Veselov (NNV) system, asymmetric NNV equation, asymmetric DS equation, dispersive long wave equation, Broer-Kaup-Kupershmidt system, long wave–short wave interaction model, Maccari system, and a general (N+ M)-component Ablowitz-Kaup-Newell-Segur (AKNS) …

参考文章(80)
Sen-yue Lou, H-y Ruan, Revisitation of the localized excitations of the (2+1)-dimensional KdV equation Journal of Physics A. ,vol. 34, pp. 305- 316 ,(2001) , 10.1088/0305-4470/34/2/307
Sen-yue Lou, Li-Li Chen, Formal variable separation approach for nonintegrable models Journal of Mathematical Physics. ,vol. 40, pp. 6491- 6500 ,(1999) , 10.1063/1.533103
F. Calogero, M. C. Nucci, Lax pairs galore Journal of Mathematical Physics. ,vol. 32, pp. 72- 74 ,(1991) , 10.1063/1.529096
On three-dimensional packets of surface waves Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 338, pp. 101- 110 ,(1974) , 10.1098/RSPA.1974.0076
Xiao-Yan Tang, Sen-Yue Lou, Abundant coherent structures of the dispersive long-wave equation in (2+1)-dimensional spaces Chaos Solitons & Fractals. ,vol. 14, pp. 1451- 1456 ,(2002) , 10.1016/S0960-0779(02)00077-2
M. Clerc, P. Coullet, E. Tirapegui, Lorenz Bifurcation: Instabilities in Quasireversible Systems Physical Review Letters. ,vol. 83, pp. 3820- 3823 ,(1999) , 10.1103/PHYSREVLETT.83.3820
Sen-Yue Lou, Generalized dromion solutions of the (2+1)-dimensional KdV equation Journal of Physics A. ,vol. 28, pp. 7227- 7232 ,(1995) , 10.1088/0305-4470/28/24/019
R.A. Kraenkel, M. Senthilvelan, A.I. Zenchuk, Lie symmetry analysis and reductions of a two-dimensional integrable generalization of the Camassa–Holm equation Physics Letters A. ,vol. 273, pp. 183- 193 ,(2000) , 10.1016/S0375-9601(00)00474-6