Multi-Layer Neural Network with functional inputs: an inverse regression approach

作者: Louis Ferré , Nathalie Villa

DOI:

关键词:

摘要: Functional data analysis is a growing research field since more and pratical applications involve functional data. In this paper, we focus on the problem of regression classification with predictors: model suggested combines an efficient dimension reduction procedure (functional SIR, first introduced by Ferre Yao (2003)), for which give regularized version, accuracy neural network. The consistency proved method successfully confronted to real life

参考文章(39)
L Zhu, KW Ng, Asymptotics of sliced inverse regression Academia Sinica, Institute of Statistical Science. The Journal's web site is located at http://www.stat.sinica.edu.tw/statistica/. ,(1995)
Denis Bosq, Modelization, Nonparametric Estimation and Prediction for Continuous Time Processes Nonparametric Functional Estimation and Related Topics. pp. 509- 529 ,(1991) , 10.1007/978-94-011-3222-0_38
Louis Ferré, Nathalie Villa, Discrimination de courbes par regression inverse fonctionnelle Revue de statistique appliquée. ,vol. 53, pp. 39- 57 ,(2005)
BW Silverman, SD Pezzulli, Some properties of smoothed principal components analysis for functional data Computational Statistics. ,vol. 8, pp. 1- 16 ,(1993)
Frédéric Ferraty, Philippe Vieu, The Functional Nonparametric Model and Application to Spectrometric Data Computational Statistics. ,vol. 17, pp. 545- 564 ,(2002) , 10.1007/S001800200126
A N Tikhonov, REGULARIZATION OF INCORRECTLY POSED PROBLEMS SOVIET MATHEMATICS DOKLADY. ,vol. 4, pp. 1624- 1627 ,(1963)
S. E. Leurgans, R. A. Moyeed, B. W. Silverman, Canonical correlation analysis when the data are curves. Journal of the royal statistical society series b-methodological. ,vol. 55, pp. 725- 740 ,(1993) , 10.1111/J.2517-6161.1993.TB01936.X
Hervé Cardot, Frédéric Ferraty, Pascal Sarda, Functional linear model Statistics & Probability Letters. ,vol. 45, pp. 11- 22 ,(1999) , 10.1016/S0167-7152(99)00036-X
K. Hornik, Some new results on neural network approximation Neural Networks. ,vol. 6, pp. 1069- 1072 ,(1993) , 10.1016/S0893-6080(09)80018-X